Thanks to visit codestin.com
Credit goes to github.com

Skip to content

The implement of the paper "A Semi-Supervised Multi-Scale Convolutional Sparse Coding-Guided Deep Interpretable Network for Hyperspectral Image Change Detection" (TGRS 2024)

License

Notifications You must be signed in to change notification settings

Jiahuiqu/MSCSCNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MSCSCNet

The implement of the paper "A Semi-Supervised Multi-Scale Convolutional Sparse Coding-Guided Deep Interpretable Network for Hyperspectral Image Change Detection" (IEEE Transactions on Geoscience and Remote Sensing 2024)

Prerequisites

  • Ubuntu 20.04 cuda 11.4
  • Python 3.8 Pytorch 1.12.1

Usage

The ./model/MSCSC.py include main model structure.

Please run demo.py for training and testing.

Citation

If you find this code helpful, please kindly cite:

@ARTICLE{10680161,
  author={Qu, Jiahui and Yang, Peicheng and Dong, Wenqian and Zhang, Xiaohan and Li, Yunsong},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={A Semi-Supervised Multiscale Convolutional Sparse Coding-Guided Deep Interpretable Network for Hyperspectral Image Change Detection}, 
  year={2024},
  volume={62},
  number={},
  pages={1-14},
  keywords={Feature extraction;Hyperspectral imaging;Training;Convolutional codes;Encoding;Filters;Supervised learning;Change detection (CD);deep interpretable network;hyperspectral image (HSI);multiscale convolutional sparse coding (MSCSC);semi-supervised learning},
  doi={10.1109/TGRS.2024.3460105}}

About

The implement of the paper "A Semi-Supervised Multi-Scale Convolutional Sparse Coding-Guided Deep Interpretable Network for Hyperspectral Image Change Detection" (TGRS 2024)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages