Provides tools for detecting XOR-like patterns in variable pairs. Includes visualizations for pattern exploration.
Traditional feature selection methods often miss complex non-linear relationships where variables interact to produce class differences. The detectXOR
package specifically targets XOR patterns - relationships where class discrimination only emerges through variable interactions, not individual variables alone.
π XOR pattern detection - Statistical identification using ΟΒ² and Wilcoxon tests
π Correlation analysis - Class-wise Kendall Ο coefficients
π Visualization - Spaghetti plots and decision boundary visualizations
β‘ Parallel processing - Multi-core acceleration for large datasets
π¬ Robust statistics - Winsorization and scaling options for outlier handling
The R libary can be found on The Comprehensive R Archive Network at https://cran.r-project.org/package=detectXOR
Install the libary from CRAN:
# Install detectXOR
install.packages("detectXOR")
The package requires R β₯ 3.5.0 and depends on:
dplyr
,tibble
(data manipulation)ggplot2
,ggh4x
,scales
(visualization)future
,future.apply
,pbmcapply
,parallel
(parallel processing)reshape2
,glue
(data processing and string manipulation)DescTools
(statistical tools)- Base R packages:
stats
,utils
,methods
,grDevices
Optional packages (suggested):
testthat
,knitr
,rmarkdown
(development and documentation)doParallel
,foreach
(additional parallel processing options)
library(detectXOR)
# Load example data
data(XOR_data)
# Detect XOR patterns with default settings
results <- detectXOR(XOR_data, class_col = "class")
# View summary
print(results$results_df)
# Detection with custom thresholds and parallel processing
results <- detect_xor(
data = XOR_data,
class_col = "class",
p_threshold = 0.01,
tau_threshold = 0.4,
max_cores = 4,
extreme_handling = "winsorize",
scale_data = TRUE
)
Parameter | Type | Default | Description |
---|---|---|---|
data |
data.frame | required | Input dataset with variables and class column |
class_col |
character | "class" |
Name of the class/target variable column |
check_tau |
logical | TRUE |
Compute class-wise Kendall Ο correlations |
compute_axes_parallel_significance |
logical | TRUE |
Perform group-wise Wilcoxon tests |
p_threshold |
numeric | 0.05 |
Significance threshold for statistical tests |
tau_threshold |
numeric | 0.3 |
Minimum absolute Ο for "strong" correlation |
abs_diff_threshold |
numeric | 20 |
Minimum absolute difference for practical significance |
split_method |
character | "quantile" |
Tile splitting method: "quantile" or "range" |
max_cores |
integer | NULL |
Maximum cores for parallel processing (auto-detect if NULL) |
extreme_handling |
character | "winsorize" |
Outlier handling: "winsorize" , "remove" , or "none" |
winsor_limits |
numeric vector | c(0.05, 0.95) |
Winsorization percentiles |
scale_data |
logical | TRUE |
Standardize variables before analysis |
use_complete |
logical | TRUE |
Use only complete cases (remove NA values) |
The detectXOR()
function returns a list with two components:
Column | Description |
---|---|
var1 , var2 |
Variable pair names |
xor_shape_detected |
Logical: XOR pattern identified |
chi_sq_p_value |
ΟΒ² test p-value for tile independence |
tau_class_0 , tau_class_1 |
Class-wise Kendall Ο coefficients |
tau_difference |
Absolute difference between class Ο values |
wilcox_p_x , wilcox_p_y |
Wilcoxon test p-values for each axis |
significant_wilcox |
Logical: significant group differences detected |
Contains comprehensive analysis for each variable pair including:
- Tile pattern analysis results
- Statistical test outputs
- Processed data subsets
- Intermediate calculations
Function | Description | Key Parameters |
---|---|---|
generate_spaghetti_plot_from_results() |
Creates connected line plots showing variable trajectories for XOR-detected pairs | results , data , class_col , scale_data = TRUE |
generate_xy_plot_from_results() |
Generates scatter plots with decision boundary lines for detected XOR patterns | results , data , class_col , scale_data = TRUE , quantile_lines = c(1/3, 2/3) , line_method = "quantile" |
Both functions return ggplot objects that can be displayed or saved manually.
# Generate plots
generate_spaghetti_plot_from_results(results, XOR_data)
generate_xy_plot_from_results(results, XOR_data)
Function | Description | Key Parameters |
---|---|---|
generate_xor_reportConsole() |
Creates console-friendly formatted report with optional plots | results , data , class_col , scale_data = TRUE , show_plots = TRUE |
generate_xor_reportHTML() |
Generates comprehensive HTML report with interactive elements | results , data , class_col , output_file , open_browser = TRUE |
# Generate formatted report
generate_xor_reportHTML(results, XOR_data, class_col = "class")
The report will be automaticlaly opened in the system standard web browser.
- Pairwise dataset creation - Extract all variable pairs with preprocessing
- Tile pattern analysis - Divide variable space into 2Γ2 tiles and test for XOR-like distributions
- Statistical validation - Apply ΟΒ² tests for independence and Wilcoxon tests for group differences
- Correlation analysis - Compute class-wise Kendall Ο to quantify relationship strength
- Result aggregation - Combine findings into interpretable summary format
- ΟΒ² Test: Tests independence of tile patterns vs. random distribution
- Wilcoxon rank sum: Evaluates group differences along variable axes
- Kendall Ο: Measures monotonic correlation within each class separately
- Feature selection enhancement - Identify interaction features that complement traditional univariate methods
- Variable interaction discovery - Find synergistic variable pairs where class separation emerges only through combined effects
- Preprocessing for ensemble methods - Generate interaction features for boosting algorithms and neural networks
- Dimensionality reduction guidance - Preserve important variable interactions when reducing feature space
- Windows: Uses
future::multisession
for parallel processing - Unix/Linux/macOS: Uses
pbmcapply::pbmclapply
with fork-based parallelism - Memory management: Automatic chunk-based processing for large datasets
detectXOR/
βββ R/ # Package source code
βββ man/ # Package documentation
βββ data/ # Example dataset
βββ issues/ # Problem reporting
βββ analyses/ # Files used to generate or plot publictaion data sets (not in library)
This project is licensed under the GNU General Public License v3.0 (GPL-3.0)
LΓΆtsch, J, Kringel D & Ultsch A. (2025). Generalized extended OR (XOR) pattern discovery: Accurate predictors without statistical significance in multivariate data. [submitted]