Thanks to visit codestin.com
Credit goes to github.com

Skip to content

K1seki221/Latent_Crossing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 

Repository files navigation

LaX: Official Implementation

[News] Our paper has been accepted by NeurIPS 2025.

ViTs Pre-training

Prepare your ImageNet-1K dataset under {data_dir}.

Navigate to the ViT pre-training directory by cd vits_pretraining

Launch Pre-training

Run the following command to start pre-training:

bash ./ddp_pretrain_vits.sh 8 \
  --data-dir {data_dir} \
  --model {model_name} \
  --batch-size 128 \
  --epochs 300 \
  --opt adamw \
  --weight-decay 0.3 \
  --warmup-epochs 10 \
  --sched cosine \
  --lr {learning_rate} \
  --pin-mem \
  --workers 8 \
  --fast-norm \
  --aa original \
  --mixup 0.2

Dense Model Settings

For dense baselines:

  • Set {learning_rate} to 3e-3

  • Choose {model_name} from:

    • vit_base_patch16_224
    • vit_large_patch16_224

Low-Rank Model Settings

For low-rank models, use {learning_rate} = 1e-3. For example, to pre-train LaX-CoLA ViT-B:

bash ./ddp_pretrain_lax_vit.sh 8 \
  --data-dir {data_dir} \
  --model Lax_CoLA_vit_base_16_224 \
  --batch-size 128 \
  --epochs 300 \
  --opt adamw \
  --weight-decay 0.3 \
  --warmup-epochs 10 \
  --sched cosine \
  --lr 1e-3 \
  --torchcompile \
  --pin-mem \
  --workers 8 \
  --fast-norm \
  --aa original \
  --mixup 0.2

Supported Model Variants

  • SVD / LaX-SVD:

    Plain_CoLA_base_16_224_Ablation_SVD
    Plain_CoLA_base_16_224_Ablation_LaxSVD
    Plain_CoLA_large_16_224_Ablation_SVD
    Plain_CoLA_large_16_224_Ablation_LaxSVD
    
  • Tensor Train (TT) / LaX-TT:

    Plain_TT_4cores_vit_base
    Lax_TT_4cores_vit_base
    Plain_TT_4cores_vit_large
    Lax_TT_4cores_vit_large
    
  • CoLA / LaX-CoLA:

    Plain_CoLA_vit_base_16_224
    Lax_CoLA_vit_base_16_224
    Plain_CoLA_vit_large_16_224
    Lax_CoLA_vit_large_16_224
    

LLMs Pre-training

Coming Soon.

LaX-LoRA Fine-Tuning

Coming Soon.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages