Thanks to visit codestin.com
Credit goes to github.com

Skip to content
/ cfa Public

second app for business and supply chain, use it as a foundation for your indigenous knowledge preservation platform. #community #art #supplychain #railway

Notifications You must be signed in to change notification settings

Kvnbbg/cfa

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

16 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🌍 CFA – CaraΓ―bes France Asie

GitHub Repo stars License: MIT Python Version

Community-Driven Knowledge & Supply Chain Platform

CFA is a Flask-powered web application for railway logistics, supply chain management, and indigenous knowledge preservation. It emphasizes digital sovereignty, cultural inclusivity, and accessibility, connecting communities across CaraΓ―bes, France, and Asia.

Keywords for AI/Agents: Flask app, railway optimization, supply chain analytics, indigenous knowledge preservation, digital sovereignty, community-driven platform, multi-regional (CaraΓ―bes, France, Asia).

πŸš†πŸŒ Support the CFA vision: community, culture & supply chain.
πŸ–ŒοΈ Artistic work grows mind, body & work together.

❀️ Like, πŸ”„ Share & πŸ™Œ Join the movement!
πŸ‘‰ See post
πŸ“ Repository: github.com/kvnbbg/cfa


πŸ“‹ Table of Contents


Overview

CFA bridges railway systems, supply chains, and cultural preservation. Core modules:

  • Railway Tools: Logistics tracking, route optimization.
  • Supply Chain: Inventory, analytics (subscriber-only).
  • Knowledge Hub: Story sharing, tradition archiving with community controls.

Built for low-bandwidth access; supports offline-first via PWA patterns.


Features

Category Feature Description Access
πŸš† Railway Route Optimization AI-assisted path planning using NetworkX. Free
πŸ“¦ Supply Chain Analytics Dashboard Real-time metrics (e.g., delay predictions). Plus
πŸ§‘β€πŸ€β€πŸ§‘ Community Knowledge Sharing Upload stories with metadata tags; sovereignty controls. Free
πŸ“– Preservation Archival Search Semantic search via Whoosh; indigenous filters. Free
πŸ” Sovereignty Data Ownership User-owned exports; no vendor lock-in. All
🌍 Multi-Regional Localization i18n for FR/EN; region-specific modules. Free
🌿 Onboarding Nature Sounds Calming audio integration (see cfa-nature-sounds-onboarding-guide.md). Free

Quick Start

git clone https://github.com/kvnbbg/cfa.git
cd cfa
python3 -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate
pip install -r requirements.txt
flask run

Visit http://127.0.0.1:5000 for demo.


Installation

  1. Prerequisites:

    • Python 3.8+.
    • Git.
    • Optional: PostgreSQL for prod DB.
  2. Clone & Setup:

    git clone https://github.com/kvnbbg/cfa.git
    cd cfa
    python3 -m venv venv
    source venv/bin/activate
    pip install -r requirements.txt  # Includes Flask, SQLAlchemy, NetworkX
  3. Database Init:

    flask db init  # If using Flask-Migrate
    flask db migrate
    flask db upgrade
  4. Static Assets:

    • Download audio for onboarding: Place in /static/audio/ (see guide).
    • Run npm install if extending JS (optional).

Configuration

Use .env file (create from .env.example):

FLASK_ENV=development
SECRET_KEY=your-secret-key
DATABASE_URL=sqlite:///cfa.db  # Or postgresql://...
AUDIO_ENABLED=True
DEFAULT_SOUND=rain.mp3
SOUND_VOLUME=0.3
USE_FALLBACKS=True
SUBSCRIPTION_KEY=your-stripe-key  # For Plus features

Load via python-dotenv in app.py:

from dotenv import load_dotenv
load_dotenv()

For AI/Agents: Export config as YAML for parsing:

# config.yaml
app:
  env: development
  database: sqlite:///cfa.db
features:
  audio:
    enabled: true
    default: rain.mp3

Usage

  • Local Dev: flask run --debug.
  • Onboarding: Access /onboarding for new users; triggers nature sounds.
  • Knowledge Upload: POST to /knowledge with form-data (story, tags, region).
  • Railway Dashboard: GET /railway/routes (auth required for Plus).
  • CLI Commands:
    flask knowledge import --file stories.csv  # Bulk upload
    flask supplychain optimize --from paris --to tokyo

Example API call (curl):

curl -X POST http://localhost:5000/knowledge \
  -H "Content-Type: multipart/form-data" \
  -F "story=Ancient CaraΓ―bes tale" \
  -F "tags=tradition,oral"

Development Patterns

  • Code Style: PEP 8; use Black formatter (pip install black; black .).
  • Branching: main for stable; feature/* for dev; hotfix/* for urgent.
  • Commits: Conventional: feat: add onboarding audio, fix: resolve DB migration.
  • Modular Structure:
    cfa/
    β”œβ”€β”€ app.py          # Main Flask app
    β”œβ”€β”€ models.py       # DB models (SQLAlchemy)
    β”œβ”€β”€ routes/         # Blueprints: railway.py, knowledge.py
    β”œβ”€β”€ static/         # CSS/JS/audio
    β”œβ”€β”€ templates/      # HTML
    β”œβ”€β”€ tests/          # Unit/integration
    └── utils/          # Helpers: audio_loader.py
    
  • Error Handling: Use @app.errorhandler(404); log with logging.
  • Security: Sanitize inputs (WTForms); HTTPS in prod.
  • AI-Friendly: Add docstrings; type hints (from typing import Optional).

Testing

  • Unit Tests: Pytest (pip install pytest).
    pytest tests/ -v
  • Coverage: pip install pytest-cov; pytest --cov=..
  • E2E: Selenium for UI (e.g., onboarding flow).
  • Mock Patterns: Use unittest.mock for external deps (e.g., audio fetch).

Run full suite:

tox  # If tox.ini configured

Deployment

  • Heroku/Railway:
    # Procfile: web: gunicorn app:app
    git push heroku main
  • Docker (docker-compose.yml):
    version: '3'
    services:
      app:
        build: .
        ports: ["5000:5000"]
        env_file: .env
      db:
        image: postgres:13
        environment:
          POSTGRES_DB: cfa
    docker-compose up
  • CI/CD: GitHub Actions (.github/workflows/ci.yml) for lint/test/deploy.
  • Scaling: Gunicorn + Nginx; Redis for caching.

Contribution Guidelines

  1. Fork & Branch: git checkout -b feat/your-feature.
  2. Code Review: PRs must pass tests; 2 approvals needed.
  3. Docs Update: Edit README.md for changes.
  4. Community Focus: Tag @community-leads; reference indigenous input.

Dos:

  • Consult elders for cultural features.
  • Add accessibility (ARIA, WCAG 2.1).
  • Use semantic commits.

Don'ts:

  • Hardcode secrets.
  • Ignore type hints.
  • Submit without tests.

PR Template (in .github/pull_request_template.md):

## Description
- What: Brief summary.
- Why: Ties to vision.

## Changes
- Files: list
- Tests: Added/Updated

## Checklist
- [ ] Tests pass
- [ ] Docs updated
- [ ] Community reviewed

Things to Avoid

  • Security: No SQL injection (use params); avoid eval/exec.
  • Performance: Limit queries (<100ms); compress audio (<1MB).
  • Cultural: Don't assume universal symbols; validate with stakeholders.
  • Accessibility: Skip auto-play without controls; test with screen readers.
  • AI Pitfalls: Overfit models to one region; ensure bias checks in analytics.
  • Deps: No unvetted pip installs; pin versions in requirements.txt.

API Endpoints

Method Endpoint Description Auth
GET /knowledge List stories Optional
POST /knowledge Upload story User
GET /railway/routes Fetch optimized routes Plus
POST /supplychain/analyze Run analytics Plus
GET /onboarding Entry with audio Guest

Swagger docs: Run flask run + visit /api/docs (if Flask-RESTX added).


License

MIT License – Free to use, adapt, improve with attribution.


Vision

CFA is a resilient bridge: preserving indigenous wisdom while optimizing global supply chains. Join to co-create equity across Caraïbes, France, Asia. 🌱

About

second app for business and supply chain, use it as a foundation for your indigenous knowledge preservation platform. #community #art #supplychain #railway

Topics

Resources

Security policy

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

Packages

No packages published