This is the repo for paper "Selective Cross-City Transfer Learning for Traffic Prediction via Source City Region Re-Weighting", KDD 2022.
Go to data repo and unzip the crosstres_data.zip file.
The structures of src are as follows:
model.py: Contains implementation of base models.utils.py: Necessary utility functions.run_crosstres.py: The implementation of CrossTReS. The requirements are:- Python=3.8
- PyTorch=1.9.0
- DGL=0.6.1
- sklearn
run_crosstres_rt.py: The implementation of CrossTReS which uses RegionTrans for fine-tuning.gen_rt_dict.py: This script generates the dictionary for RegionTrans to do matching.
You can check the tunable parameters in run_crosstres.py and run_crosstres_rt.py.
Note: Runningrun_crosstres.py requires approximately 10GB GPU memory with batch_size=32. You can reduce batch_size to reduce memory cost.
run_crosstres.py:python run_crosstres.py --SET_PARAMETERS.run_crosstres_rt.py:- First, run
python gen_rt_dict.py --metric poi --source [NY, CHI] --target [DC]. You will get a file under thesrc/rt_dictfolder. - Then, run
python run_crosstres_rt.py --SET_PARAMETERS --rt_dict poi.
- First, run