Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Keerthan22-sys/Crime-Prediction-And-Analysis

 
 

Repository files navigation

Crime-Prediction-And-Analysis


A multi-class classification model using a Random Forest classifier is built to predict the type of major crime committed based on time of day, neighbourhood, division, year, month, etc. The dataset includes every major crime committed from 2014-2019* in the city of Toronto, with detailed information about the location and time of offence. The data contains only categorical variables so the modeling process tests both numeric encoding and OneHot encoding, with some improvement with the latter approach. The model performs reasonably well on F1-score (precision and recall) for a five-class classification problem. Though the data set is somewhat unbalanced towards assaults (higher volume), balancing class weights does not materially impact model performance.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%