Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Official repository for the AAAI 2024 paper "Deep Homography Estimation for Visual Place Recognition".

License

Notifications You must be signed in to change notification settings

Lu-Feng/DHE-VPR

Repository files navigation

DHE-VPR

This is the official repository for the AAAI 2024 paper "Deep Homography Estimation for Visual Place Recognition". [AAAI proceedings] [arXiv] The arXiv version is more complete.

Our another two-stage VPR work SelaVPR achieved SOTA performance on several datasets. The code has been released HERE.

Getting Started

This repo follows the Visual Geo-localization Benchmark. You can refer to it (VPR-datasets-downloader) to prepare datasets and train the CCT-14 backbone (i.e. feature extractor).

The dataset should be organized in a directory tree as such:

├── datasets_vg
    └── datasets
        └── pitts30k
            └── images
                ├── train
                │   ├── database
                │   └── queries
                ├── val
                │   ├── database
                │   └── queries
                └── test
                    ├── database
                    └── queries

You can directly download the trained CCT-14 backbone:

trained on MSLS: CCT14_msls

trained on Pitts30k: CCT14_pitts30k

Train (initialize) the DHE network

After getting the CCT14 backbone trained on MSLS (CCT14_msls.pth), you can train (i.e. initialize) the DHE network on MSLS:

python train_dhe.py --resume_fe=/path/to/your/CCT14_msls.pth --datasets_folder=/path/to/your/datasets_vg/datasets --dataset_name=msls

You can directly download the initialized DHE network HERE.

Finetune

To jointly finetune the backbone and the DHE network on the MSLS dataset, please run:

python3 finetune.py --datasets_folder=/path/to/your/datasets_vg/datasets --dataset_name=msls --epochs_num=2 --resume_fe=/path/to/your/CCT14_msls.pth --resume_hr=/path/to/your/initializedDHE.torch --queries_per_epoch=10000

Finetune on the Pitts30k dataset, please run:

python3 finetune.py --datasets_folder=/path/to/your/datasets_vg/datasets --dataset_name=pitts30k --epochs_num=40 --resume_fe=/path/to/your/CCT14_pitts30k.pth --resume_hr=/path/to/your/initializedDHE.torch

You can directly download the finetuned CCT14 backbone and DHE network:

MSLS: finetunedCCT14 | finetunedDHE

Pitts30k: finetunedCCT14 | finetunedDHE

Test

To evaluate the finetuned complete DHE-VPR model on MSLS (or Pitts30k), run:

python eval.py  --resume_fe=/path/to/your/finetunedCCT14_msls.torch --resume_hr=/path/to/your/finetunedDHE_msls.torch --datasets_folder=/path/to/your/datasets_vg/datasets --dataset_name=msls

Acknowledgements

Parts of this repo are inspired by the following repositories:

Visual Geo-localization Benchmark

GeoWarp

TransVPR

Citation

If you find this repo useful for your research, please consider citing the paper

@inproceedings{dhevpr,
  title={Deep Homography Estimation for Visual Place Recognition},
  author={Lu, Feng and Dong, Shuting and Zhang, Lijun and Liu, Bingxi and Lan, Xiangyuan and Jiang, Dongmei and Yuan, Chun},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2024},
  volume={38}, 
  number={9}, 
  pages={10341-10349}
}

About

Official repository for the AAAI 2024 paper "Deep Homography Estimation for Visual Place Recognition".

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages