Thanks to visit codestin.com
Credit goes to github.com

Skip to content

[SIGIR 2025] Class Activation Values: Lucid and Faithful Visual Interpretations for CLIP-based Text-Image Retrievals.

Notifications You must be signed in to change notification settings

PengSyuChen/CAV

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Class Activation Values: Lucid and Faithful Visual Interpretations for CLIP-based Text-Image Retrievals

Pytorch implementation of Class Activation Values: Lucid and Faithful Visual Interpretations for CLIP-based Text-Image Retrievals, which is accepted by SIGIR 2025.

😄 Pipeline of Class Activation Values:

🔥 Intrepreting CLIP Text-Image Retrievals:

🔥 Intrepreting CLIP Zero-Shot Classification:

🛠️ Requirements

python 3.X
jupyter notebook
pytorch >= 1.5 (including torchvision)
matplotlib
opencv-python

🗝️ How to Run

run demo.ipynb

✏️ Citation

@inproceedings{chen2025cav, 
   title={Class Activation Values: Lucid and Faithful Visual Interpretations for CLIP-based Text-Image Retrievals}, 
   author={Pengxu Chen and Huazhong Liu and Jihong Ding and Xinghao Huang and Shaojun Zou and Laurence T. Yang}, 
   booktitle={Proceeding of the ACM SIGIR International Conference on Research and Development in Information Retrieval}, 
   year={2025},
   pages={844-853},
   doi={10.1145/3726302.3729923}
}

Any questions can be asked at [email protected]

About

[SIGIR 2025] Class Activation Values: Lucid and Faithful Visual Interpretations for CLIP-based Text-Image Retrievals.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published