Thanks to visit codestin.com
Credit goes to github.com

Skip to content

PrabhaBharadwaj/DS-Project-Toolkit

Repository files navigation

DS-Project-Toolkit

DS Projects

Mainly contains 3 Major Areas:

1. Machine Learning(ML):

  • Python basic scripts in "01 General"
  • Feature Engineering steps in "02 Feature Engineering"
  • All different ML Algorithms with Examples"
  • Different Boosting Tech with Examples"
    • 01 General
    • 02 Feature Engineering
    • 03 Linear Regression
    • 04 Logistic Regression
    • 05 Polynomial Regression
    • 06 DecisionTree RandomForest
    • 07 Naive Bayes
    • 08 SVM
    • 09 KNN
    • 10 Ridge Lasso Regression
    • 11 KMean Cluster Unsupervised
    • 12 Agglomerative Hierarchy Cluster Unsupervised
    • 13 Apriori Algorithm Association Rule
    • 14 UB CB Recommendation
    • 15 Reinforcement Learning
    • 16 Time Series
    • 17 Boosting_and_CV
    • 18 Projects
    • 19 Libraries

2. Natural Language Processing (NLP):

  • Basic NLP Code
  • Advanced NLP Project
    • 01_DSH_NLP_Basic_Text_Mining
    • 02_DSH_NLP_Advanced_Text_Processing
    • 03_DSH_NLP_ML_(SGDClassifier, LogisticRegression, LogisticRegressionCV, LinearSVC,RandomForestClassifier)
    • 04_DSH_NLP_SpamEmailClassifierUseCase (MultinomialNB)
    • 05_DSH_NLP_Stock Sentiment Analysis UseCase (RandomForestClassifier)
    • 06_DSH_NLP_FakeNewsClassifier_TFIDF
    • 07_DSH_NLP_News_Topics_Clustering (Unsupervised Learning in NLP)
    • 08_DSH_NLP_WordEmbedding Using Keras
    • 09_DSH_NLP_FakeNewsClassifier Using LSTM
    • 10_DSH_NLP_Stock Prediction Using Stacked LSTM
    • 11_DSH_NLP_Encoder_Decoder

3. Deep Learning(DL):

  • Basic DL Code, Explained Basic Neural Network ANN,CNN,RNN. (CNN with example)
    • Theory on (NN or ANN), CNN Object Detection and Image segmentation(RCNN, FastRCNN, Fater RCNN, YOLO), RNN (LSTM,GRU)
  • Advanced DL Concepts, not full project ( -01a_digits_recognition
    • 01b_keras_fashion_mnist_neural_net
    • 02_activation_functions,
    • 03_derivatives
    • 05_loss
    • 06_gradient_descent
    • 07_nn_from_scratch
    • 08_SGD_vs_BGD_vs_miniBGD
    • 09_tensorboard
    • 11_chrun_prediction
    • 12_precision_recall
    • 13_dropout_layer
    • 14_imbalanced
    • 16_cnn_cifar10_small_image_classification
    • 17_data_augmentation
    • 18_transfer_learning
    • 22_word_embedding
    • 23_word2vec_in_gensim
    • 24_tf_data_pipeline_Very_good
    • 25_prefatch_cache_tf_datapipeline_optimization
    • 26_BERT_intro
    • 27_BERT_text_classification
    • 28_tf_serving
    • 29_quantization

4. PYSPark:

5. WebScap:

  • WebScrapping Basic

About

DS Projects

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published