DS Projects
- Python basic scripts in "01 General"
- Feature Engineering steps in "02 Feature Engineering"
- All different ML Algorithms with Examples"
- Different Boosting Tech with Examples"
- 01 General
- 02 Feature Engineering
- 03 Linear Regression
- 04 Logistic Regression
- 05 Polynomial Regression
- 06 DecisionTree RandomForest
- 07 Naive Bayes
- 08 SVM
- 09 KNN
- 10 Ridge Lasso Regression
- 11 KMean Cluster Unsupervised
- 12 Agglomerative Hierarchy Cluster Unsupervised
- 13 Apriori Algorithm Association Rule
- 14 UB CB Recommendation
- 15 Reinforcement Learning
- 16 Time Series
- 17 Boosting_and_CV
- 18 Projects
- 19 Libraries
- Basic NLP Code
- Advanced NLP Project
- 01_DSH_NLP_Basic_Text_Mining
- 02_DSH_NLP_Advanced_Text_Processing
- 03_DSH_NLP_ML_(SGDClassifier, LogisticRegression, LogisticRegressionCV, LinearSVC,RandomForestClassifier)
- 04_DSH_NLP_SpamEmailClassifierUseCase (MultinomialNB)
- 05_DSH_NLP_Stock Sentiment Analysis UseCase (RandomForestClassifier)
- 06_DSH_NLP_FakeNewsClassifier_TFIDF
- 07_DSH_NLP_News_Topics_Clustering (Unsupervised Learning in NLP)
- 08_DSH_NLP_WordEmbedding Using Keras
- 09_DSH_NLP_FakeNewsClassifier Using LSTM
- 10_DSH_NLP_Stock Prediction Using Stacked LSTM
- 11_DSH_NLP_Encoder_Decoder
- Basic DL Code, Explained Basic Neural Network ANN,CNN,RNN. (CNN with example)
- Theory on (NN or ANN), CNN Object Detection and Image segmentation(RCNN, FastRCNN, Fater RCNN, YOLO), RNN (LSTM,GRU)
- Advanced DL Concepts, not full project (
-01a_digits_recognition
- 01b_keras_fashion_mnist_neural_net
- 02_activation_functions,
- 03_derivatives
- 05_loss
- 06_gradient_descent
- 07_nn_from_scratch
- 08_SGD_vs_BGD_vs_miniBGD
- 09_tensorboard
- 11_chrun_prediction
- 12_precision_recall
- 13_dropout_layer
- 14_imbalanced
- 16_cnn_cifar10_small_image_classification
- 17_data_augmentation
- 18_transfer_learning
- 22_word_embedding
- 23_word2vec_in_gensim
- 24_tf_data_pipeline_Very_good
- 25_prefatch_cache_tf_datapipeline_optimization
- 26_BERT_intro
- 27_BERT_text_classification
- 28_tf_serving
- 29_quantization
- WebScrapping Basic