Thanks to visit codestin.com
Credit goes to github.com

Skip to content

R4EPI/epidict

epidict

Lifecycle: maturing CRAN status R-CMD-check Codecov test coverage

The goal of {epidict} is to provide standardized data dictionaries for use in epidemiological data analysis templates. Currently it supports standardised dictionaries from MSF OCA. This is a product of the R4EPIs project; learn more at https://r4epi.github.io/sitrep/

Installation

You can install {epidict} from CRAN:

install.packages("epidict")

Click here for alternative installation options

If there is a bugfix or feature that is not yet on CRAN, you can install it via the {drat} package:

You can also install the in-development version from GitHub using the {remotes} package (but there’s no guarantee that it will be stable):

# install.packages("remotes")
remotes::install_github("R4EPI/epidict") 

Accessing dictionaries

The dictionaries can be obtained via the msf_dict() function, which specifies a variable and their possible options (if categorical).

There are MSF intersectional outbreak dictionaries available in {epidict} based on ODK exports.

There are MSF OCA outbreak dictionaries available in {epidict} based on DHIS2 exports. > You can read more about the outbreak dictionaries at https://r4epi.github.io/epidict/articles/Outbreaks.html

In addition, there are MSF survey dictionaries available based on ODK exports. > You can read more about the survey dictionaries at https://r4epi.github.io/epidict/articles/Surveys.html

You can also read in your own ODK dictionaries using read_dict().

Generating data

The {epidict} package has a function for generating data that’s called gen_data(), which takes three arguments: The dictionary, which column describes the variable names, and how many rows are needed in the output.

Click here for code examples

library("epidict")
gen_data("Measles", varnames = "data_element_shortname", numcases = 100, org = "MSF")
#> # A tibble: 100 × 52
#>    case_number date_of_consultation_admis…¹ patient_facility_type patient_origin
#>    <chr>       <date>                       <fct>                 <chr>         
#>  1 A1          2018-04-23                   OP                    Village D     
#>  2 A2          2018-02-23                   OP                    Village C     
#>  3 A3          2018-04-15                   OP                    Village C     
#>  4 A4          2018-04-30                   OP                    Village A     
#>  5 A5          2018-01-09                   IP                    Village D     
#>  6 A6          2018-03-14                   OP                    Village D     
#>  7 A7          2018-03-20                   OP                    Village D     
#>  8 A8          2018-03-23                   OP                    Village A     
#>  9 A9          2018-01-23                   IP                    Village A     
#> 10 A10         2018-03-19                   OP                    Village D     
#> # ℹ 90 more rows
#> # ℹ abbreviated name: ¹​date_of_consultation_admission
#> # ℹ 48 more variables: age_years <int>, age_months <int>, age_days <int>,
#> #   sex <fct>, pregnant <fct>, trimester <fct>,
#> #   foetus_alive_at_admission <fct>, exit_status <fct>, date_of_exit <date>,
#> #   time_to_death <fct>, pregnancy_outcome_at_exit <fct>,
#> #   baby_born_with_complications <fct>, previously_vaccinated <fct>, …
gen_data("Vaccination_long", varnames = "name", numcases = 100, org = "MSF")
#> # A tibble: 100 × 120
#>    start end   today deviceid date       team_number village_name village_other
#>    <lgl> <lgl> <lgl> <lgl>    <date>     <lgl>       <fct>        <lgl>        
#>  1 NA    NA    NA    NA       2018-02-11 NA          village_4    NA           
#>  2 NA    NA    NA    NA       2018-03-24 NA          village_2    NA           
#>  3 NA    NA    NA    NA       2018-02-02 NA          village_9    NA           
#>  4 NA    NA    NA    NA       2018-02-20 NA          village_3    NA           
#>  5 NA    NA    NA    NA       2018-04-09 NA          village_5    NA           
#>  6 NA    NA    NA    NA       2018-01-27 NA          village_7    NA           
#>  7 NA    NA    NA    NA       2018-03-12 NA          village_6    NA           
#>  8 NA    NA    NA    NA       2018-04-11 NA          village_3    NA           
#>  9 NA    NA    NA    NA       2018-04-28 NA          village_3    NA           
#> 10 NA    NA    NA    NA       2018-03-09 NA          other        NA           
#> # ℹ 90 more rows
#> # ℹ 112 more variables: cluster_number <dbl>, household_number <int>,
#> #   households_building <int>, random_hh <int>, consent <chr>,
#> #   no_consent_reason <fct>, no_consent_other <lgl>, caretaker_relation <fct>,
#> #   caretaker_other <lgl>, number_children <dbl>, child_number <chr>,
#> #   sex <fct>, date_birth <date>, age_years <int>, age_months <int>,
#> #   any_vaccine <fct>, vaccine_card <fct>, hf_records <fct>, …

Cleaning data with the dictionaries

You can use the dictionaries to clean the data via the {matchmaker} package:

Click here for code examples

library("matchmaker")
library("dplyr")

dat <- gen_data(dictionary = "Cholera", 
  varnames = "data_element_shortname",
  numcases = 20,
  org = "MSF"
)
print(dat)
#> # A tibble: 20 × 45
#>    case_number date_of_consultation_admiss…¹ patient_origin age_years age_months
#>    <chr>       <date>                        <chr>              <int>      <int>
#>  1 A1          2018-03-23                    Village D             18         NA
#>  2 A2          2018-01-29                    Village B             27         NA
#>  3 A3          2018-01-23                    Village D             40         NA
#>  4 A4          2018-02-02                    Village D             15         NA
#>  5 A5          2018-01-23                    Village B             28         NA
#>  6 A6          2018-01-15                    Village A             40         NA
#>  7 A7          2018-01-04                    Village B             34         NA
#>  8 A8          2018-04-25                    Village D             29         NA
#>  9 A9          2018-04-18                    Village D             45         NA
#> 10 A10         2018-01-22                    Village C             10         NA
#> 11 A11         2018-02-06                    Village A             19         NA
#> 12 A12         2018-03-03                    Village D             61         NA
#> 13 A13         2018-01-08                    Village B             20         NA
#> 14 A14         2018-03-08                    Village C             73         NA
#> 15 A15         2018-03-08                    Village C             66         NA
#> 16 A16         2018-03-18                    Village A             52         NA
#> 17 A17         2018-04-03                    Village A             59         NA
#> 18 A18         2018-01-12                    Village B             24         NA
#> 19 A19         2018-01-19                    Village D             53         NA
#> 20 A20         2018-03-07                    Village A              7         NA
#> # ℹ abbreviated name: ¹​date_of_consultation_admission
#> # ℹ 40 more variables: age_days <int>, sex <fct>, pregnant <fct>,
#> #   trimester <fct>, foetus_alive_at_admission <fct>, exit_status <fct>,
#> #   date_of_exit <date>, time_to_death <fct>, pregnancy_outcome_at_exit <fct>,
#> #   previously_vaccinated <fct>, previous_vaccine_doses_received <fct>,
#> #   readmission <fct>, msf_involvement <fct>,
#> #   cholera_treatment_facility_type <fct>, residential_status_brief <fct>, …

# We want the expanded dictionary, so we will select `compact = FALSE`
dict <- msf_dict(dictionary = "Cholera", 
  long    = TRUE,
  compact = FALSE,
  tibble  = TRUE
)
print(dict)
#> # A tibble: 182 × 11
#>    data_element_uid data_element_name                     data_element_shortname
#>    <chr>            <chr>                                 <chr>                 
#>  1 AafTlSwliVQ      egen_001_patient_case_number          case_number           
#>  2 OTGOtWBz39J      egen_004_date_of_consultation_admiss… date_of_consultation_…
#>  3 wnmMr2V3T3u      egen_006_patient_origin               patient_origin        
#>  4 sbgqjeVwtb8      egen_008_age_years                    age_years             
#>  5 eXYhovYyl61      egen_009_age_months                   age_months            
#>  6 UrYJSk2Wp46      egen_010_age_days                     age_days              
#>  7 D1Ky5K7pFN6      egen_011_sex                          sex                   
#>  8 D1Ky5K7pFN6      egen_011_sex                          sex                   
#>  9 D1Ky5K7pFN6      egen_011_sex                          sex                   
#> 10 dTm5R53YYXC      egen_012_pregnancy_status             pregnant              
#> # ℹ 172 more rows
#> # ℹ 8 more variables: data_element_description <chr>,
#> #   data_element_valuetype <chr>, data_element_formname <chr>,
#> #   used_optionset_uid <chr>, option_code <chr>, option_name <chr>,
#> #   option_uid <chr>, option_order_in_set <dbl>

# Now we can use matchmaker to filter the data
dat_clean <- matchmaker::match_df(dat, dict, 
  from  = "option_code",
  to    = "option_name",
  by    = "data_element_shortname",
  order = "option_order_in_set"
)
print(dat_clean)
#> # A tibble: 20 × 45
#>    case_number date_of_consultation_admiss…¹ patient_origin age_years age_months
#>    <chr>       <date>                        <chr>              <int>      <int>
#>  1 A1          2018-03-23                    Village D             18         NA
#>  2 A2          2018-01-29                    Village B             27         NA
#>  3 A3          2018-01-23                    Village D             40         NA
#>  4 A4          2018-02-02                    Village D             15         NA
#>  5 A5          2018-01-23                    Village B             28         NA
#>  6 A6          2018-01-15                    Village A             40         NA
#>  7 A7          2018-01-04                    Village B             34         NA
#>  8 A8          2018-04-25                    Village D             29         NA
#>  9 A9          2018-04-18                    Village D             45         NA
#> 10 A10         2018-01-22                    Village C             10         NA
#> 11 A11         2018-02-06                    Village A             19         NA
#> 12 A12         2018-03-03                    Village D             61         NA
#> 13 A13         2018-01-08                    Village B             20         NA
#> 14 A14         2018-03-08                    Village C             73         NA
#> 15 A15         2018-03-08                    Village C             66         NA
#> 16 A16         2018-03-18                    Village A             52         NA
#> 17 A17         2018-04-03                    Village A             59         NA
#> 18 A18         2018-01-12                    Village B             24         NA
#> 19 A19         2018-01-19                    Village D             53         NA
#> 20 A20         2018-03-07                    Village A              7         NA
#> # ℹ abbreviated name: ¹​date_of_consultation_admission
#> # ℹ 40 more variables: age_days <int>, sex <fct>, pregnant <fct>,
#> #   trimester <fct>, foetus_alive_at_admission <fct>, exit_status <fct>,
#> #   date_of_exit <date>, time_to_death <fct>, pregnancy_outcome_at_exit <fct>,
#> #   previously_vaccinated <fct>, previous_vaccine_doses_received <fct>,
#> #   readmission <fct>, msf_involvement <fct>,
#> #   cholera_treatment_facility_type <fct>, residential_status_brief <fct>, …

About

Epidemiology data dictionaries and random data generators

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages