Thanks to visit codestin.com
Credit goes to github.com

Skip to content

HyperML project is a complete, production-ready AutoML web app. Users can upload a dataset, explore data, train ML models, compare them, visualize results, and download a final model all through a simple GUI.

License

Notifications You must be signed in to change notification settings

Sumitchongder/AutoML-with-Hyperparameter-Tuning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

18 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

๐Ÿš€ HYPERML: ACCELERATING AI WITH ADVANCED AUTOMATION

GitHub Stars Python Streamlit PyCaret License

A No-Code Machine Learning Platform Built with PyCaret + Streamlit

This project is a complete, production-ready AutoML web app. Users can upload a dataset, explore data, train ML models, compare them, visualize results, and download a final model all through a simple GUI.


๐ŸŒŸ Features

๐Ÿ“ 1. Upload Any CSV Dataset

  • Automatic data type detection
  • Missing values summary
  • Data preview + statistics
  • Clear UI workflow (Data โ†’ Training โ†’ Visualization โ†’ Prediction)

๐Ÿค– 2. AutoML Engine (Powered by PyCaret)

  • Automatic preprocessing
  • Cross-validation
  • Compare multiple ML models
  • Auto-select best model
  • Manual model selection supported

๐Ÿ“Š 3. Visualizations

  • Confusion Matrix
  • ROC / PR Curve
  • Residuals
  • Feature Importance
  • Error plots
  • All charts rendered safely without caching errors

๐Ÿ“ฆ 4. Finalize Model

  • Save the model safely
  • Prevents filename duplication
  • Download .pkl model file
  • Load model for predictions

๐Ÿ”ฎ 5. Make Predictions

  • Upload CSV for batch inference
  • Manual form for single prediction
  • Download prediction results as CSV

๐Ÿ” 6. Deployment-Safe Design

  • Full Streamlit session state handling
  • Bug-free PyCaret setup
  • No excessive memory usage
  • Safe chart rendering
  • No threading errors

๐Ÿ—๏ธ Project Structure

AutoML-App/
โ”‚
โ”œโ”€โ”€ streamlit_app_automl.py   # Main Streamlit application
โ”œโ”€โ”€ requirements.txt          # All dependencies
โ”œโ”€โ”€ models/                   # Auto-generated saved models
โ”œโ”€โ”€ temp/                     # Temporary experiment/charts
โ”œโ”€โ”€ assets/                   # Logos, icons (optional)
โ””โ”€โ”€ README.md                 # Documentation (this file)

๐Ÿงฐ Installation Guide (Beginner Friendly)

This section is step-by-step with zero assumptions.


โœ”๏ธ Step 1: Install Python 3.10 or 3.11

Download and install Python from: https://www.python.org/downloads/

During installation check the box:

โ˜‘ Add Python to PATH

โœ”๏ธ Step 2: Download or Clone the Repository

Option A โ€” Clone using Git

git clone https://github.com/<your-username>/<repo-name>.git
cd <repo-name>

Option B โ€” Download ZIP

  1. Click Code โ†’ Download ZIP
  2. Extract it
  3. Open the extracted folder

๐Ÿงช Step 3: Create a Virtual Environment

Windows:

python -m venv venv
venv\Scripts\activate

macOS / Linux:

python3 -m venv venv
source venv/bin/activate

You should now see:

(venv) C:\YourProject>

๐Ÿ“ฆ Step 4: Install All Requirements

pip install -r requirements.txt

This installs:

  • Streamlit
  • PyCaret
  • Scikit-learn
  • Pandas
  • Plotly
  • Matplotlib

Everything required to run the app.


โ–ถ๏ธ Step 5: Run the AutoML App

streamlit run streamlit_app_automl.py

Now your browser will automatically open the app at:

๐Ÿ‘‰ http://localhost:8501


๐Ÿ”ง Troubleshooting (Beginner Friendly)

โ— โ€œstreamlit: command not foundโ€

Your virtual environment is not activated. Run:

โžก Windows

venv\Scripts\activate

โžก Mac/Linux

source venv/bin/activate

โ— PyCaret setup errors

Restart the app:

streamlit run streamlit_app_automl.py

โ— Model not saving

Make sure the repo has:

models/
temp/

If missing, create them manually.


๐ŸŒ Deployment

๐Ÿš€ Deploy to Streamlit Cloud

  1. Push repo to GitHub

  2. Go to https://share.streamlit.io

  3. Select your repo

  4. Add this in "Python version":

    3.10
    
  5. Deploy โœ”๏ธ

No extra config required.


๐Ÿงญ Future Improvements

  • SHAP explainability
  • Auto PDF report generation
  • Model monitoring dashboard
  • Multi-page UI
  • Cloud model registry

๐Ÿ“œ Copyright Registration (Government of India)

Image


๐Ÿ‘จโ€๐Ÿ’ป Author

Sumit Chongder Machine Learning Engineer | AutoML Systems | Quantum & AI Research

๐Ÿ”— LinkedIn: https://www.linkedin.com/in/sumit-chongder/


๐ŸŽ‰ Support the Project

If this project helped you, please โญ star the GitHub repo โ€” it motivates further development!

About

HyperML project is a complete, production-ready AutoML web app. Users can upload a dataset, explore data, train ML models, compare them, visualize results, and download a final model all through a simple GUI.

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages