This project is a complete, production-ready AutoML web app. Users can upload a dataset, explore data, train ML models, compare them, visualize results, and download a final model all through a simple GUI.
- Automatic data type detection
- Missing values summary
- Data preview + statistics
- Clear UI workflow (Data โ Training โ Visualization โ Prediction)
- Automatic preprocessing
- Cross-validation
- Compare multiple ML models
- Auto-select best model
- Manual model selection supported
- Confusion Matrix
- ROC / PR Curve
- Residuals
- Feature Importance
- Error plots
- All charts rendered safely without caching errors
- Save the model safely
- Prevents filename duplication
- Download
.pklmodel file - Load model for predictions
- Upload CSV for batch inference
- Manual form for single prediction
- Download prediction results as CSV
- Full Streamlit session state handling
- Bug-free PyCaret setup
- No excessive memory usage
- Safe chart rendering
- No threading errors
AutoML-App/
โ
โโโ streamlit_app_automl.py # Main Streamlit application
โโโ requirements.txt # All dependencies
โโโ models/ # Auto-generated saved models
โโโ temp/ # Temporary experiment/charts
โโโ assets/ # Logos, icons (optional)
โโโ README.md # Documentation (this file)
This section is step-by-step with zero assumptions.
Download and install Python from: https://www.python.org/downloads/
During installation check the box:
โ Add Python to PATH
git clone https://github.com/<your-username>/<repo-name>.git
cd <repo-name>- Click Code โ Download ZIP
- Extract it
- Open the extracted folder
python -m venv venv
venv\Scripts\activatepython3 -m venv venv
source venv/bin/activateYou should now see:
(venv) C:\YourProject>
pip install -r requirements.txtThis installs:
- Streamlit
- PyCaret
- Scikit-learn
- Pandas
- Plotly
- Matplotlib
Everything required to run the app.
streamlit run streamlit_app_automl.pyNow your browser will automatically open the app at:
Your virtual environment is not activated. Run:
โก Windows
venv\Scripts\activateโก Mac/Linux
source venv/bin/activateRestart the app:
streamlit run streamlit_app_automl.pyMake sure the repo has:
models/
temp/
If missing, create them manually.
-
Push repo to GitHub
-
Select your repo
-
Add this in "Python version":
3.10 -
Deploy โ๏ธ
No extra config required.
- SHAP explainability
- Auto PDF report generation
- Model monitoring dashboard
- Multi-page UI
- Cloud model registry
Sumit Chongder Machine Learning Engineer | AutoML Systems | Quantum & AI Research
๐ LinkedIn: https://www.linkedin.com/in/sumit-chongder/
If this project helped you, please โญ star the GitHub repo โ it motivates further development!