This repository provides the official MATLAB implementation for the paper "RTGD-MVC: Robust Tensor Learning with Graph Diffusion for Scalable Multi-view Graph Clustering".
We are thrilled to announce that our paper, "RTGD-MVC: Robust Tensor Learning with Graph Diffusion for Scalable Multi-view Graph Clustering", has been accepted by ACM Multimedia 2025. It has also been recommended for an Oral Presentation, a testament to its strong peer-review evaluation.
Key Features:
πΉ Robust Tensor Learning with Graph Diffusion for Scalable Multi-view Graph Clustering.
πΉ One-click reproducible experiments with hyperparameter optimization
πΉ Comprehensive baseline comparisons (see baseline/ directory)
πΉ Supports common datasets (BBC, BDGP, CCV, etc.).
- MATLAB β₯ R2019b
- MATLAB Toolboxes:
- Statistics and Machine Learning Toolbox
- (Optional) Parallel Computing Toolbox (for large datasets)
 
RTGD-MVC/
βββ data/                   # Dataset storage
β   βββ BBC.mat             # Sample dataset file
βββ exp/                    # Experiment scripts
β   βββ run_demo.m          # Main experiment script
β   βββ result_RTGD-MVC/    # Results storage (auto-generated)
βββ lib/                    # Utility functions
β   βββ NormalizeFea.m      # Data normalization
βββ utils/                  # Core algorithm implementation
β   βββ Construct_FB.m      # Anchor graph construction
β   βββRTGD.m              # Main algorithm function
βββ baseline/               # Baseline implementations
β   βββ AWMVC/              # Adaptive Weighted MVC
β   βββ FPMVS-CAG/          # Fast Probabilistic MVC
β   βββ ...                 # Other baselines
βββ docs/                   # Supplementary materialsThe code is publicly available at 'https://anonymous.4open.science/r/RTGD-MVC-6646/'
- Launch MATLAB and navigate to the expfolder:cd /path/to/RTGD-MVC/exp 
- Execute the demo script:
run run_demo.m 
- Results will be saved in exp/result_RTGD-MVC/.
- 
Place Your Dataset - Save your dataset as a .matfile in thedata/folder.
- Example: For dataset mydata, save it asdata/mydata.mat.
 
- Save your dataset as a 
- 
Dataset Format Requirements 
 Ensure your.matfile contains:% Variables: % - X: Cell array of multi-view data {nView Γ 1}, each view is [nSmp Γ nFeature] % - Y: Ground truth labels [nSmp Γ 1] load('mydata.mat'); 
π Example Workflow
- Add mydata.mattodata/:RTGD-MVC/ βββ data/ βββ mydata.mat
- Set dataset = 'mydata';inrun_demo.m
- Run the code. Results will use your custom dataset.
The experimental results will be saved in the following directory structure:
exp/result_RTGD-MVC/
βββ {dataset_name}/               # e.g., BBC/
    βββ {dataset_name}_RTGD.mat   # Aggregated results (best parameters)
    βββ {dataset_name}_RTGD_param{1-N}.mat   # Per-parameter results
D:\Sean\MVC\RTGD-MVC\exp\result_RTGD-MVC\BBC\
βββ BBC_RTGD.mat                 # Best results across all parameters
βββ BBC_RTGD_param1.mat          # Results for parameter set 1
βββ BBC_RTGD_param2.mat          # Results for parameter set 2
βββ ...                          # Additional parameter results
| Variable | Description | MATLAB Access Command | 
|---|---|---|
| RTGD_global_result | Metrics for all parameter sets | load('BBC_RTGD.mat') | 
| RTGD_global_time | Average runtime per parameter set | disp(RTGD_global_time) | 
| RTGD_global_result_summary | Best metrics (ACC/NMI/PUR + time) | disp(RTGD_global_result_summary) | 
| iParam_max | Index of best-performing parameters | disp(iParam_max) | 
| Variable | Description | 
|---|---|
| temp_grid_ans | Metrics for a specific parameter set | 
| Example Metrics: | [ACC, NMI, PUR, Time] | 
Key parameters in run_demo.m:
% Hyperparameter grid search ranges:
lambda_s = 10.^(-6:1:0);  % Sparse error weight (1e-6 to 1)
delta_s = 10.^(-6:1:0);   % Convergence threshold (1e-6 to 1)
nAnch_s = nClus.*(2:1:8); % Anchors: 2ΓnClus to 8ΓnClus
ks_s = [10];               % k-Nearest Neighbors
eta_s = [1];               % Graph regularization| Parameter | Description | Search Range / Values | 
|---|---|---|
| nClus | Number of clusters | Dataset-specific (e.g., 4) | 
| nAnch | Number of anchors | 2ΓnClusto8ΓnClus | 
| ks | k-Nearest Neighbors for graph building | 10 | 
| eta | Graph regularization coefficient | 1 | 
| lambda | Sparse error weight | 10β»βΆ(1e-6) to1(log scale) | 
| delta | Convergence threshold | 10β»βΆ(1e-6) to1(log scale) | 
This project is licensed under the MIT License. See LICENSE for details.