Thanks to visit codestin.com
Credit goes to github.com

Skip to content

This repository provides the official MATLAB implementation for the paper "RTGD-MVC: Robust Tensor Learning with Graph Diffusion for Scalable Multi-view Graph Clustering".

Notifications You must be signed in to change notification settings

Sean2CS/RTGD-MVC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

3 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

RTGD-MVC: Robust Tensor Learning with Graph Diffusion for Scalable Multi-view Graph Clustering

Project Structure License

This repository provides the official MATLAB implementation for the paper "RTGD-MVC: Robust Tensor Learning with Graph Diffusion for Scalable Multi-view Graph Clustering".

πŸŽ‰ News & Updates

We are thrilled to announce that our paper, "RTGD-MVC: Robust Tensor Learning with Graph Diffusion for Scalable Multi-view Graph Clustering", has been accepted by ACM Multimedia 2025. It has also been recommended for an Oral Presentation, a testament to its strong peer-review evaluation.


Key Features:
πŸ”Ή Robust Tensor Learning with Graph Diffusion for Scalable Multi-view Graph Clustering.
πŸ”Ή One-click reproducible experiments with hyperparameter optimization
πŸ”Ή Comprehensive baseline comparisons (see baseline/ directory)
πŸ”Ή Supports common datasets (BBC, BDGP, CCV, etc.).


πŸ“‹ Table of Contents

  1. Requirements
  2. Project Structure
  3. Quick Start
  4. Dataset Preparation
  5. Output Results
  6. Parameters
  7. License

πŸ›  Requirements

  • MATLAB β‰₯ R2019b
  • MATLAB Toolboxes:
    • Statistics and Machine Learning Toolbox
    • (Optional) Parallel Computing Toolbox (for large datasets)

πŸ“‚ Project Structure

RTGD-MVC/
β”œβ”€β”€ data/                   # Dataset storage
β”‚   └── BBC.mat             # Sample dataset file
β”œβ”€β”€ exp/                    # Experiment scripts
β”‚   β”œβ”€β”€ run_demo.m          # Main experiment script
β”‚   └── result_RTGD-MVC/    # Results storage (auto-generated)
β”œβ”€β”€ lib/                    # Utility functions
β”‚   └── NormalizeFea.m      # Data normalization
β”œβ”€β”€ utils/                  # Core algorithm implementation
β”‚   β”œβ”€β”€ Construct_FB.m      # Anchor graph construction
β”‚   └──RTGD.m              # Main algorithm function
β”œβ”€β”€ baseline/               # Baseline implementations
β”‚   β”œβ”€β”€ AWMVC/              # Adaptive Weighted MVC
β”‚   β”œβ”€β”€ FPMVS-CAG/          # Fast Probabilistic MVC
β”‚   └── ...                 # Other baselines
└── docs/                   # Supplementary materials

πŸš€ Quick Start

Step 1: Clone the Repository

The code is publicly available at 'https://anonymous.4open.science/r/RTGD-MVC-6646/'

Step 2: Run the Demo

  1. Launch MATLAB and navigate to the exp folder:
    cd /path/to/RTGD-MVC/exp
  2. Execute the demo script:
    run run_demo.m
  3. Results will be saved in exp/result_RTGD-MVC/.

πŸ“ Dataset Preparation

  1. Place Your Dataset

    • Save your dataset as a .mat file in the data/ folder.
    • Example: For dataset mydata, save it as data/mydata.mat.
  2. Dataset Format Requirements
    Ensure your .mat file contains:

    % Variables:
    % - X: Cell array of multi-view data {nView Γ— 1}, each view is [nSmp Γ— nFeature]
    % - Y: Ground truth labels [nSmp Γ— 1]
    load('mydata.mat'); 

πŸ”„ Example Workflow

  1. Add mydata.mat to data/:
    RTGD-MVC/
    └── data/
        └── mydata.mat
    
  2. Set dataset = 'mydata'; in run_demo.m
  3. Run the code. Results will use your custom dataset.

πŸ“Š Output Results

πŸ“‚ Results Storage Structure

Output Path Format

The experimental results will be saved in the following directory structure:

exp/result_RTGD-MVC/
└── {dataset_name}/               # e.g., BBC/
    β”œβ”€β”€ {dataset_name}_RTGD.mat   # Aggregated results (best parameters)
    └── {dataset_name}_RTGD_param{1-N}.mat   # Per-parameter results

Example for BBC Dataset

D:\Sean\MVC\RTGD-MVC\exp\result_RTGD-MVC\BBC\
β”œβ”€β”€ BBC_RTGD.mat                 # Best results across all parameters
β”œβ”€β”€ BBC_RTGD_param1.mat          # Results for parameter set 1
β”œβ”€β”€ BBC_RTGD_param2.mat          # Results for parameter set 2
└── ...                          # Additional parameter results

πŸ—‚οΈ File Contents

1. Aggregated Results File (BBC_RTGD.mat)

Variable Description MATLAB Access Command
RTGD_global_result Metrics for all parameter sets load('BBC_RTGD.mat')
RTGD_global_time Average runtime per parameter set disp(RTGD_global_time)
RTGD_global_result_summary Best metrics (ACC/NMI/PUR + time) disp(RTGD_global_result_summary)
iParam_max Index of best-performing parameters disp(iParam_max)

2. Per-Parameter Results (BBC_RTGD_param1.mat)

Variable Description
temp_grid_ans Metrics for a specific parameter set
Example Metrics: [ACC, NMI, PUR, Time]

βš™ Parameters

Key parameters in run_demo.m:

% Hyperparameter grid search ranges:
lambda_s = 10.^(-6:1:0);  % Sparse error weight (1e-6 to 1)
delta_s = 10.^(-6:1:0);   % Convergence threshold (1e-6 to 1)
nAnch_s = nClus.*(2:1:8); % Anchors: 2Γ—nClus to 8Γ—nClus
ks_s = [10];               % k-Nearest Neighbors
eta_s = [1];               % Graph regularization
Parameter Description Search Range / Values
nClus Number of clusters Dataset-specific (e.g., 4)
nAnch Number of anchors 2Γ—nClus to 8Γ—nClus
ks k-Nearest Neighbors for graph building 10
eta Graph regularization coefficient 1
lambda Sparse error weight 10⁻⁢ (1e-6) to 1 (log scale)
delta Convergence threshold 10⁻⁢ (1e-6) to 1 (log scale)

πŸ“œ License

This project is licensed under the MIT License. See LICENSE for details.

About

This repository provides the official MATLAB implementation for the paper "RTGD-MVC: Robust Tensor Learning with Graph Diffusion for Scalable Multi-view Graph Clustering".

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages