This is where i save model used in face-recognition task
1. Setup environments:
conda create --name model_env python=3.6
conda activate model_env
pip install torch==1.8.0+cpu torchvision==0.9.0+cpu -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt2. Run:
To convert pytorch model into onnx, run:
conda activate model_env
python main.pyTo test time running on each onnx model, run:
conda activate model_env
python time_check.pychange config in config.py base on what you want to test
3. Parameters number and speed of modify network:
- In experiment with IR-50 network, i replaced last layer of original network with the last layer of Ghostnet, result in the decreasing up to 10 million parameters
IR-50 parameters
IR-GHOST-50 parameters
- In the time Testing of previous models, the modified one (IR-GHOST-50) has the average runtime on 1000 ([1, 3, 112, 112]) numpy tensors lower than the Original network (IR-50) nearly by half.
Time Test:
4. Experiments Training on modify (augmentation, mask) Glint360k:
Some tensorboard images:
More detail is in: Tensorboard
https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html