Thanks to visit codestin.com
Credit goes to github.com

Skip to content

An availability poisoning method for generating transferable poisoned data across different victim learners.

Notifications You must be signed in to change notification settings

TrustMLRG/TransPoison

Repository files navigation

TransPoison

Code for "Transferable Availability Poisoning Attacks"

🏄 Poison generation

python anneal.py --net ResNet18 --dataset CIFAR10 --recipe targeted --eps 8 --budget 1.0 --save poison_dataset --poison_path ./results/resnet18_cifar10_tp --attackoptim PGD --cl_alg SimCLR --allow_mmt_grad --restarts 1

🏂 Evaluation

  • Eval with supervised learning
python poison_evaluation/main.py --load_path ./results/resnet18_cifar10_tp/ --runs 1
  • Eval with supervised contrastive learning
python main.py --dataset tpcifar10 --arch resnet18 --cl_alg SupCL --folder_name baseline_tp --baseline --epochs 1000 --eval_freq 100
  • Eval with semi-supervised learning (FixMatch)
python FixMatch/Train_fixmatch.py --seed 1 --arch resnet18 --dataset tpcifar10 --n_classes 10
  • Eval with SimSiam
python main.py --dataset tpcifar10 --arch resnet18 --cl_alg SimSiam --folder_name baseline_tp --baseline --epochs 1000 --eval_freq 100
  • Eval with SimCLR
python main.py --dataset tpcifar10 --arch resnet18 --cl_alg SimCLR --folder_name baseline_tp --baseline --epochs 1000 --eval_freq 100

About

An availability poisoning method for generating transferable poisoned data across different victim learners.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages