Thanks to visit codestin.com
Credit goes to github.com

Skip to content

UbiquitousLearning/NNV12

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NNV12

This repo is a DNN framework for Boosting DNN Cold Inference. This repo is based on ncnn.


Benchmark on Android Phone CPU

The following instructions are executed on a PC with an operating system of Ubuntu 22.04.

  1. Install NDK and adb.

    $ mkdir ./NDK && cd ./NDK
    $ wget https://dl.google.com/android/repository/android-ndk-r21e-linux-x86_64.zip
    $ unzip ./android-ndk-r21e-linux-x86_64.zip
    $ echo export ANDROID_NDK=$HOME/NDK/android-ndk-r21e >> ~/.bashrc
    $ source ~/.bashrc
    $ sudo apt install adb
  2. Connect PC and android phone via USB cable.

  3. Clone this repo.

    $ git clone --recursive https://github.com/Yeeethan00/NNV12.git 
    $ cd ./NNV12
  4. Build and push models to android phone.

    $ cd ./scripts
    $ chmod +x ./init_arm64.sh
    $ ./init_arm64.sh
  5. Deploy models.

    $ chmod +x ./deployed_arm64.sh
    $ ./deployed_arm64.sh
  6. Run NNV12.

    $ chmod +x ./run_arm64.sh
    $ ./run_arm64.sh
  7. The result of latency is shown in "./scripts/output.csv".

There are results get from Meizu 16T (Snapdragon 855).

Model latency(ms)
alexnet 120.123
googlenet 56.401
mobilenet 22.084
mobilenet_v2 25.346
resnet18 59.672
resnet50 103.136
shufflenet 13.576
shufflenet_v2 12.033
squeezenet 14.139
efficientnet_b0 27.235
mobilenetv2_yolov3 25.258
mobilenet_yolo 25.953
crnn_lite 68.267

Benchmark on Jetson Nano GPU

The following instructions are executed on a Jetson Nano.

  1. Install Vulkan and CMake.

    $ cd ./scripts
    $ chmod +x ./install_jetson.sh
    $ ./install_jetson.sh
  2. Clone this repo.

    $ git clone --recursive https://github.com/Yeeethan00/NNV12.git 
    $ cd ./NNV12
  3. Build project.

    $ chmod +x ./init_jetson.sh
    $ ./init_jetson.sh
  4. Deploy models.

    $ chmod +x ./deployed_jetson.sh
    $ ./deployed_jetson.sh
  5. Run NNV12.

    $ chmod +x ./run_jetson.sh
    $ ./run_jetson.sh
  6. The result of latency is shown in "./scripts/output.csv".

There are results get from Jetson Nano.

Model latency(ms)
alexnet 262.942
googlenet 161.181
mobilenet 86.916
mobilenet_v2 102.992
resnet18 183.460
resnet50 295.534
shufflenet 61.941
shufflenet_v2 75.309
squeezenet 96.929
efficientnet_b0 141.834
mobilenetv2_yolov3 150.258
mobilenet_yolo 91.953
crnn_lite 241.672

About

No description, website, or topics provided.

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 153