ZeroEval is a simple unified framework for evaluating (large) language models on various tasks. This repository aims to evaluate instruction-tuned LLMs for their zero-shot performance on various reasoning tasks such as MMLU and GSM. We evaluate LLMs with a unified setup by controlling the factors such as prompting, sampling, output parsing, etc. In ZeroEval, we perform zero-shot prompting, and instruct LM to output both reasoning and answer in a json-formatted output. We are actively adding new tasks. Contributions are welcome!
- Leaderboard: https://hf.co/spaces/allenai/ZeroEval
- X post
- Support new tasks (GPPA, AIME, etc.)
- Prefix-prefill for open models such that the parsing is easier
- Add other formatting options (e.g. markup language instead of json, etc.)
Click to expand
conda create -n zeroeval python=3.10
conda activate zeroeval
# pip install vllm -U # pip install -e vllm
pip install vllm -U
pip install -r requirements.txt
# export HF_HOME=/path/to/your/custom/cache_dir/-
MMLU-redux (
-d mmlu-redux) -
ZebraLogic (
-d zebra-grid) -
CRUX (
-d crux) -
MATH (Level 5) (
-d math-l5) -
GSM8K (
-d gsm) -
More tasks will be added soon. (e.g., ARC, MMLU-Pro, etc.)
zero_eval_local.sh and zero_eval_api.sh are the two main scripts to run the evaluation.
-
bash zero_eval_local.sh -d mmlu-redux -m meta-llama/Meta-Llama-3-8B-Instruct -p Meta-Llama-3-8B-Instruct -s 4(Run Llama-3-8B-Instruct with greedy decoding onmmlu-redux) -
bash zero_eval_api.sh -d gsm -f openai -m openai/gpt-4o-mini-2024-07-18 -p gpt-4o-mini-2024-07-18 -s 8(Run gpt-4o-mini with greedy decoding ongsm) -
bash zero_eval_api.sh -d zebra-grid -f openai -m deepseek-chat -p deepseek-chat -s 8(Run deepseek-chat via openai style api, with greedy decoding onzebra-grid)
More examples can be found in the scripts folder, e.g., the scripts/_MMLU_redux.md and scripts/_GSM.md files as well as scripts/local/crux.sh.
Command Line Arguments
| Arguments | Description | Default |
|---|---|---|
-d |
DATA_NAME: mmlu-redux, gsm, math-l5, zebra-grid, alpaca_eval, ... (see src/task_configs.py) |
|
-m |
model_name | |
-p |
model_pretty_name | |
-s |
number of shards (When -s 1 we'll use all your GPUs for loading the model and running the inference; When -s K, we'll use K GPUs and divide the data into K shards for each GPU to run the inference on a single shard, and merge the results at the end.) |
1 |
-f |
engine (vllm by default for zero_eval_local.sh, can be changed to hf; For zero_eval_api.sh, we can use openai, anthropic, ...) |
vllm/openai for zero_eval_local/api.sh |
-r |
run_name (the results will be saved in a sub folder with the run_name when it is specified) |
"default" |
-t |
temperature | 0 (greedy decoding) |
-o |
top_p for nucleus sampling | 1.0 |
-e |
repetition penalty | 1.0 |
-b |
batch size | 4 |
-x |
max_length | 4096 |
🚨 View results on our Leaderboard: https://hf.co/spaces/allenai/ZeroEval
- MMLU-Redux:
python src/evaluation/mcqa_eval.py mmlu-redux--> Full results - GSM/MATH-L5:
python src/evaluation/math_eval.py math-l5/gsm--> Full results - ZebraLogic:
python src/evaluation/zebra_grid_eval.py--> Full results and Leaderboard - CRUX:
python src/evaluation/crux_eval.py--> Full results - All:
python src/evaluation/summarize.py--> Full results ⬇️
If you find ZeroEval useful, please cite it as follows in your publication:
@software{Lin_ZeroEval_A_Unified_2024,
author = {Lin, Bill Yuchen},
month = jul,
title = {{ZeroEval: A Unified Framework for Evaluating Language Models}},
url = {https://github.com/WildEval/ZeroEval},
year = {2024}
}