Thanks to visit codestin.com
Credit goes to github.com

Skip to content

XRerate/SFControl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Motion Synthesis with Sparse and Flexible Keyjoint Control

Teaser Image


Dataset Preparation

  1. Download and preprocess the HumanML3D dataset under the dataset/ directory.
  2. Convert the raw HumanML3D data into our global representation format.
    (The conversion script will be released soon.)

Training

Stage1 Model

python -m train.train_sfcontrol   --endeffector_conditioned   --endeffector_only   --endeffector_selection_scheme random_joints   --head   --diffusion_steps 50   --latent_dim 128   --lambda_ric_pos 0.1   --lambda_ric_vel 10.0   --lambda_ric_fc 10.0   --dataset humanml   --data_rep glo_joints

Stage2 Model

python -m train.train_sfcontrol   --endeffector_conditioned   --endeffector_selection_scheme all_endeffectors   --head   --diffusion_steps 50   --latent_dim 512   --dataset humanml   --data_rep glo_root

Citation

If you find our work helpful, please consider citing:

@misc{hwang2025motionsynthesissparseflexible,
    title={Motion Synthesis with Sparse and Flexible Keyjoint Control},
    author={Inwoo Hwang and Jinseok Bae and Donggeun Lim and Young Min Kim},
    year={2025},
    eprint={2503.15557},
    archivePrefix={arXiv},
    primaryClass={cs.GR},
    url={https://arxiv.org/abs/2503.15557}
}

Acknowledgment

We sincerely thank the open-source projects that our code builds upon and draws inspiration from: CondMDI, GMD and MDM.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%