EIF6D: Dual-Stream Transformation Network with Implicit-Explicit Fusion for Category-Level 6D Pose Estimation
Code for "EIF-6D: Dual-Stream Transformation Network with Implicit-Explicit Fusion for Category-Level 6D Pose Estimation"
EIF6D introduces a novel approach to category-level 6D pose estimation,a dual-stream transformation network that integrates explicit and implicit collaborative deformation mechanisms, which achieves high-precision alignment between shape priors and observed objects at both point cloud level and feature level.
We provide a comprehensive conda environment configuration to ensure all dependencies are properly installed:
# Create and activate the conda environment
conda env create -f environment.yaml
conda activate eif6dThe environment includes:
- PyTorch 1.10.1 with CUDA 11.3 support
- Python 3.6.13
Compile the custom PointNet++ operations:
# Compile pointnet2 modules
cd model/pointnet2
python setup.py installFor the REAL275 and CAMERA25 datasets, please follow:
The datasets should be organized in the following structure:
data
├── CAMERA
│ ├── train
│ └── val
├── camera_full_depths
│ ├── train
│ └── val
├── Real
│ ├── train
│ └── test
├── gts
│ ├── val
│ └── real_test
├── obj_models
│ ├── train
│ ├── val
│ ├── real_train
│ └── real_test
├── segmentation_results
│ ├── train_trainedwoMask
│ ├── test_trainedwoMask
│ └── test_trainedwithMask
└── mean_shapes.npy
Train the model from scratch using:
# For single GPU training
python trainPT2Net.py --gpus 0 --config config/PT2Net.yaml
# For multi-GPU training
python trainPT2Net.py --gpus 0,1 --config config/PT2Net.yamlTraining configurations can be adjusted in config/PT2Net.yaml.
Evaluate the trained model on test datasets:
python test_PT2.py --config config/PT2Net.yamlOur method achieves state-of-the-art performance on the REAL275 and CAMERA25 benchmarks:
| Method | 5° 2cm | 5° 5cm | 10° 2cm | 10° 5cm | IoU75 |
|---|---|---|---|---|---|
| NOCS | 7.2 | 10.0 | 13.8 | 25.2 | 30.1 |
| RBP-Pose | 38.2 | 48.1 | 63.1 | 79.2 | 67.8 |
| DPDN | 46.0 | 50.7 | 70.4 | 78.4 | 76.0 |
| IST-Net | 47.5 | 53.4 | 72.1 | 80.5 | 76.6 |
| Ours | 50.6 | 57.4 | 72.7 | 81.5 | 77.1 |