YOLOSHOW - YOLOv5 / YOLOv7 / YOLOv8 / YOLOv9 / YOLOv10 / YOLOv11 / RTDETR / SAM / MobileSAM / FastSAM GUI based on Pyside6
YOLOSHOW is a graphical user interface (GUI) application embed with YOLOv5 YOLOv7 YOLOv8 YOLOv9 YOLOv10 YOLOv11 RT-DETR SAM MobileSAM FastSAM algorithm.
English | 简体中文
YOLOSHOW v1.x : YOLOSHOW-YOLOv9/YOLOv8/YOLOv7/YOLOv5/RTDETR GUI
YOLOSHOW v2.x : YOLOSHOWv2.0-YOLOv9/YOLOv8/YOLOv7/YOLOv5/RTDETR GUI
- Add
YOLOv9YOLOv10RT-DETRYOLOv11SAMMobileSAMFastSAMAlgorithm - Support Instance Segmentation (
YOLOv5YOLOv8YOLOv11SAMMobileSAMFastSAM) - Support Pose Estimation (
YOLOv8YOLOv11) - Support Oriented Bounding Boxes (
YOLOv8YOLOv11) - Support Http Protocol in
RTSPFunction (SingleMode ) - Add Model Comparison Mode(VS Mode)
- Support Dragging File Input
- Tracking & Counting (
Industrialization)
Choose Image / Video / Webcam / Folder (Batch) / IPCam in the menu bar on the left to detect objects.
When the program is running to detect targets, you can change models / hyper Parameters
- Support changing model in
YOLOv5/YOLOv7/YOLOv8/YOLOv9/YOLOv10/YOLOv11/RTDETR/YOLOv5-seg/YOLOv8-segYOLOv11-seg/YOLOv8-pose/YOLOv11-pose/YOLOv8-obb/YOLOv11-obb/SAM/MobileSAM/FastSAMdynamically - Support changing
IOU/Confidence/Delay time/line thicknessdynamically
Our program will automatically detect pt files including YOLOv5 Models / YOLOv7 Models / YOLOv8 Models / YOLOv9 Models / YOLOv10 Models / YOLOv11 Models / RT-DETR Models / SAM Models / MobileSAM Models / FastSAM Models that were previously added to the ptfiles folder.
If you need add the new pt file, please click Import Model button in Settings box to select your pt file. Then our program will put it into ptfiles folder.
Notice :
- All
ptfiles are named includingyolov5/yolov7/yolov8/yolov9/yolov10/yolo11/rtdetr/sam/samv2/mobilesam/fastsam. (e.g.yolov8-test.pt) - If it is a
ptfile of segmentation mode, please name it includingyolov5n-seg/yolov8s-seg/yolo11-seg. (e.g.yolov8n-seg-test.pt) - If it is a
ptfile of pose estimation mode, please name it includingyolov8n-pose/yolo11n-pose. (e.g.yolov8n-pose-test.pt) - If it is a
ptfile of oriented bounding box mode, please name it includingyolov8n-obb/yolo11n-obb. (e.g.yolov8n-obb-test.pt)
- After startup, the program will automatically loading the last configure parameters.
- After closedown, the program will save the changed configure parameters.
If you need Save results, please click Save Mode before detection. Then you can save your detection results in selected path.
From YOLOSHOW v3.0,our work supports both Object Detection , Instance Segmentation, Pose Estimation and Oriented Bounding Box. Meanwhile, it also supports task switching between different versions,such as switching from YOLOv5 Object Detection task to YOLOv8 Instance Segmentation task.
7. Support Model Comparison among Object Detection, Instance Segmentation, Pose Estimation and Oriented Bounding Box
From YOLOSHOW v3.0,our work supports compare model performance among Object Detection, Instance Segmentation, Pose Estimation and Oriented Bounding Box.
OS : Windows 11
CPU : Intel(R) Core(TM) i7-10750H CPU @2.60GHz 2.59 GHz
GPU : NVIDIA GeForce GTX 1660Ti 6GBcreate a virtual environment equipped with python version 3.9, then activate environment.
conda create -n yoloshow python=3.9
conda activate yoloshowWindows: pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
Linux: pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118Change other pytorch version in
Switch the path to the location of the program
cd {the location of the program}Install dependency package of program
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simpleCopy all font files *.ttf in fonts folder into C:\Windows\Fonts
mkdir -p ~/.local/share/fonts
sudo cp fonts/Shojumaru-Regular.ttf ~/.local/share/fonts/
sudo fc-cache -fvThe MacBook is so expensive that I cannot afford it, please install .ttf by yourself. 😂
python main.pyYOLOv5 YOLOv7 YOLOv8 / YOLOv11 / RT-DETR / SAM / MobileSAM / FastSAM YOLOv9 YOLOv10