Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Z1hanW/CRISP-Real2Sim

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CRISP: Contact-guided Real2Sim from Monocular Video with Planar Scene Primitives

arXiv Project Page

teaser

(Code is in beta test.)

1. Repository Setup

git clone --recursive https://github.com/Z1hanW/CRISP-Real2Sim.git
cd CRISP-Real2Sim

Create and Activate the Conda Environment

conda create -n crisp python=3.10 -y
conda activate crisp

Install PyTorch (CUDA 12.4 build)

pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 "xformers>=0.0.27" \
  --index-url https://download.pytorch.org/whl/cu124
pip install torch-scatter -f https://data.pyg.org/whl/torch-2.4.1+cu124.html
pip install -r requirements.txt
pip install --no-build-isolation "git+https://github.com/facebookresearch/pytorch3d.git@stable"
python -m pip install -U timm
pip install numpy==1.26.4
python -m pip install --no-build-isolation "git+https://github.com/mattloper/chumpy.git"

If you encounter compilation errors (usually on pytorch3d or CUDA extensions), install a compatible compiler toolchain: conda install -c conda-forge gxx_linux-64=11.

Extra Installation Scripts

Some dependencies (for rendering, viewers, etc.) are wrapped in helper scripts inside prep/:

cd prep
sh install*
cd ..

2. Download Assets and Data

  1. SMPL/SMPL-X body models (required for rendering and evaluation)
    • Register at SMPL and SMPL-X.
    • Place the downloaded .pkl files using the structure below.
prep/data/
└── body_models/
    ├── smpl/SMPL_{GENDER}.pkl
    └── smplx/SMPLX_{GENDER}.pkl
  1. Demo videos and metadata
mkdir -p data
gdown --folder "https://drive.google.com/drive/folders/1k712Oj9StmWXRzSeSMiHZc3LtvsVk2Rw" -O data

gdown is installed via requirements.txt. Use the -O data flag so Google Drive folders land under CRISP-Real2Sim/data.


3. Run the Full Pipeline

The scripts expect your source sequences to live under either *_videos or *_img folders. Remove that suffix when you feed paths to the scripts.

data/
├── demo_videos/
│   └── walk-kicking/        # example sequence, this is SEQ_NAME
└── YOUR_videos/
    ├── seq_a/
    └── seq_b/
sh all_gv.sh /path/to/data/demo        # not /path/to/data/demo_videos
  • The script will iterate through every *_videos (or *_img) folder under the path you supply.
  • Intermediate data, meshes, and evaluations are written back into the respective sequence directories.

4. Visualize Human–Scene Reconstructions

Compile viser

cd __release/vis_scripts/viser_m
pip install -e .

Visualize your sequences (e.g. wall-kicking)

bash vis.sh ${SEQ_NAME}

Common flags (see script header for the full list):

  • --scene_name: override the scene used for rendering.
  • --data_root: custom data directory if not ./data.
  • --out_dir: write visualizations to a different folder.

5. Train Your Agent

Code Testing, See you in days.


6. Visualize Your Agent

Agent visualization builds on the same vis.sh infrastructure:

python agents/vis_agent.py \
  --checkpoint path/to/checkpoint.pt \
  --seq ${SEQ_NAME} \
  --out_dir outputs/agent_viz/${SEQ_NAME}

Pass --scene_name or --camera_pose_file if your controller requires a custom scene or camera path.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published