Thanks to visit codestin.com
Credit goes to github.com

Skip to content

muschellij2/walking

Repository files navigation

walking

R-CMD-check

The goal of walking is to provide some algorithms to detect walking in tri-axial accelerometers.

Installation

You can install the development version of walking from GitHub with:

# install.packages("devtools")
devtools::install_github("muschellij2/walking")

Example

This is a basic example which shows you how to solve a common problem:

library(walking)
csv_file = system.file("test_data_bout.csv", package = "walking")
x = readr::read_csv(csv_file)
#> Rows: 98 Columns: 6
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr  (1): accuracy
#> dbl  (4): timestamp, x, y, z
#> dttm (1): UTC time
#> 
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
colnames(x)[colnames(x) == "UTC time"] = "time"
res = find_walking(data = x)
#> Preprocessing Bout
#> Bout is Preprocessed
#> OAK: Find walking is done
print(res)
#>                   time steps
#> 1  2020-02-25 18:18:31  1.65
#> 2  2020-02-25 18:18:32  1.60
#> 3  2020-02-25 18:18:33  1.55
#> 4  2020-02-25 18:18:34  1.60
#> 5  2020-02-25 18:18:35  1.55
#> 6  2020-02-25 18:18:36  1.85
#> 7  2020-02-25 18:18:37  1.80
#> 8  2020-02-25 18:18:38  1.75
#> 9  2020-02-25 18:18:39  1.75
#> 10 2020-02-25 18:18:40  1.70

Potential Conflicts

Running forest and stepcount.

The two Python modules (forest and stepcount) can be be installed in the same conda environment, but if they are not, this will lead to an error message. The options. One solution is to run them in two separate R sessions (recommended).

Alternatively, you can try to install forest in the stepcount conda environment, such as:

envname = "stepcount2"
stepcount::conda_create_stepcount(envname = envname)
# if you have RETICULATE_PYTHON set
stepcount::unset_reticulate_python()
stepcount::use_stepcount_condaenv(envname = envname)
walking::install_forest(envname = envname)

and then run examples such as:

library(walking)
library(stepcount)
envname = "stepcount2"

# if you have RETICULATE_PYTHON set
stepcount::unset_reticulate_python()
stepcount::use_stepcount_condaenv(envname = envname)

csv_file = system.file("test_data_bout.csv", package = "walking")
x = readr::read_csv(csv_file)
colnames(x)[colnames(x) == "UTC time"] = "time"
res = find_walking(data = x)

Remember, however, best practices for Python is “Always create a separate virtual environment for each project” and sometimes one for each “goal”.

About

Interfaces the forest Python module (https://github.com/onnela-lab/forest) to segment walking and other activities from accelerometry data.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages