Thanks to visit codestin.com
Credit goes to github.com

Skip to content

marcburri/bridgr

Repository files navigation

bridgr

Lifecycle: stable R-CMD-check bridgr status badge CRAN status Codecov test coverage

bridgr is designed to simplify the implementation and evaluation of bridge models, which are useful for nowcasting (predicting the present or near-term) and forecasting macroeconomic variables like GDP.

Bridge models are statistical tools that link high-frequency indicators (e.g., monthly industrial production) to low-frequency target variables (e.g., quarterly GDP) by forecasting and aggregating the indicators to match the target’s frequency. They enable timely predictions before the official release of low-frequency data, making them essential for policymakers who need early insights for decision-making.

Installation

From CRAN:

install.packages("bridgr")

You can install the development version of bridgr like so:

# install.packages("devtools")
devtools::install_github("marcburri/bridgr")

Example

This is a basic example:

library(bridgr)

gdp <- suppressMessages(tsbox::ts_pc(bridgr::gdp))

bridge_model <- bridge(
  target = gdp, 
  indic = baro, 
  indic_predict = "auto.arima", 
  indic_lags = 2, 
  target_lags=1, 
  h=2
)
#> The start dates of the target and indicator variables do not match. Aligning them to 2004-04-01
#> Dependent variable: gdp | Frequency: quarter | Estimation sample: 2004-04-01 - 2022-10-01 | Forecast horizon: 2 quarter(s)

forecast(bridge_model)
#>    Point Forecast      Lo 80    Hi 80      Lo 95    Hi 95
#> 74      0.8313868 -0.1302710 1.793045 -0.6393418 2.302115
#> 75      0.5363317 -0.4397745 1.512438 -0.9564939 2.029157

summary(bridge_model)
#> Bridge model summary
#> -----------------------------------
#> Main model:
#> -----------------------------------
#> Series:  gdp 
#> Regression with ARIMA(1,0,0) errors 
#> 
#> Coefficients:
#>          ar1  intercept    baro  baro_lag1  baro_lag2
#>       0.1740    -7.4164  0.1574    -0.0957     0.0172
#> s.e.  0.1312     1.4152  0.0126     0.0125     0.0127
#> 
#> sigma^2 = 0.5631:  log likelihood = -80.04
#> AIC=172.09   AICc=173.36   BIC=185.83
#> -----------------------------------
#> Single indicator models:
#> -----------------------------------
#> Series:  baro 
#> ARIMA(1,0,2) with non-zero mean 
#> 
#> Coefficients:
#>          ar1     ma1     ma2      mean
#>       0.6688  0.5305  0.3316  100.8580
#> s.e.  0.0653  0.0799  0.0753    1.5774
#> 
#> sigma^2 = 18.46:  log likelihood = -646.14
#> AIC=1302.28   AICc=1302.55   BIC=1319.36
#> Aggregation to low frequency:
#> Using mean over values in corresponding periods.
#> -----------------------------------

About

Bridging Time Series Frequencies for Nowcasting

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Packages

No packages published

Languages