This is the official implementation of Test Time Embedding Normalization for Popularity Bias Mitigation, CIKM 2023.
- python == 3.9.12
 - pytorch == 1.13.0
 - scipy == 1.11.1
 - numpy == 1.25.2
 - pandas == 2.0.3
 - tqdm == 4.66.1
 - scikit-learn == 1.3.0
 
Clone the repository and install requirements with
conda create -n TTEN python=3.9.12
conda activate TTEN
pip install -r requirements.txt
python main.py --loss_type ssm --lr 0.001 --ssm_temp 0.1 --dataset fair_gowalla --tten
python main.py --loss_type ssm --lr 0.001 --ssm_temp 0.12 --dataset fair_yelp2018 --tten
python main.py --loss_type ssm --lr 0.001 --ssm_temp 0.1 --dataset fair_ml10m --tten
@inproceedings{kim2023test,
  title={Test-Time Embedding Normalization for Popularity Bias Mitigation},
  author={Kim, Dain and Park, Jinhyeok and Kim, Dongwoo},
  booktitle={Proceedings of the 32nd ACM International Conference on Information and Knowledge Management},
  pages={4023--4027},
  year={2023}
}