Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Releases: mlpack/mlpack

mlpack 4.7.0

01 Feb 02:20

Choose a tag to compare

Released Jan. 31st, 2026.

  • Allow batching when training RNN with ragged lengths (#4042).

  • Fixed generated artifiacts in resized float images by using clamping (#4030).

  • Optimize convolution (#3988).

  • Added GELUExact ANN activation layer (#3994).

  • Adapt GRU ANN layer to the new interface (#3955).

  • Fix warning on CRAN for bundled STB (#3950).

  • Fix potential MSVC constructor shadowing (#3958).

  • Use a looser check for auto-detection of categorical file types (#3961).

  • Accelerate CELU layer (#3975).

  • Fix dependency detection bugs in mlpack.cmake (#3981).

  • Add a SumReduce layer (#3991).

  • Update header used by R packages compiling directly against C++ API (#3990).

  • Add FFN::Add() and RNN::Add() with copy and move semantics; use these instead of passing layers to Add() as pointers (#3974).

  • Mark long-running tests with the [long] tag (#3983).

  • Added DAGNetwork class to represent complex neural network structures (#3944).

  • Fix mask handling in MultiHeadAttention layer (#3998)

  • Added data::GroupChannels() and data::InterleaveChannels() for preprocessing images before using Convolution layers. (#4006)

  • Fix infinite recursion in Octree when the number of identical points exceeds maxLeafSize (#4020).

  • Add Embedding layer (#3999).

  • Add YOLOv3Tiny for object detection (#4023).

  • Fix thread-specific random seed initialization (#4027).

  • R bindings now return class attributes as vector with the given model, mlpack model bindings and list as fallback (#4045).

  • Added BoundingBoxImage() for drawing bounding boxes onto images when doing tasks such as object detection (#4039).

mlpack 4.6.2

22 May 14:58

Choose a tag to compare

Released May 22, 2025.

  • Fix compilation of Save() when HDF5 is enabled (#3942).

  • Update bundled STB to fix warnings in R bindings (#3940).

  • Fix cross-validation support for algorithms with many parameters (including RandomForest) (#3941).

mlpack 4.6.1

14 May 18:55

Choose a tag to compare

Released May 14, 2025.

  • Shuffle sequence lengths for RNNs (#3926).
  • Add ability to compile OpenBLAS for Windows (#3922).
  • Drop pytest-runner and "setup.py test" support (#3921).
  • Fix compilation errors with clang++ version 20 (#3928).

mlpack 4.6.0

03 Apr 15:51

Choose a tag to compare

Released Apr. 3, 2025.

  • Fix command-line duplicate output bug when loading matrices for some bindings (#3838).
  • Use CMAKE_BUILD_TYPE to specify build type instead of DEBUG and PROFILE options (#3865).
  • Add MLPACK_NO_STD_MUTEX to allow disabling std::mutex (#3868).
  • Bundle STB with mlpack and add ResizeImages() functionality (#3823).
  • Add mlpack.cmake to facilitate finding mlpack and its dependencies (#3872).
  • Fix conversion of empty Armadillo objects to numpy in Python bindings (#3896).
  • Added bootstrap strategies for RandomForest: IdentityBootstrap, DefaultBootstrap, and SequentialBootstrap (#3829).
  • Add ResizeCropImages() for resize-and-crop image preprocessing functionality (#3903).
  • Fix LSTM input size calculation for multidimensional inputs (#3913).

mlpack 4.5.1

04 Dec 19:12

Choose a tag to compare

Released Dec. 4, 2024.

  • Fix compilation with clang 19 (#3799).
  • Deprecate version of data::Split() that returns a std::tuple for consistency; use other overloads instead (#3803).
  • Fix LSTM layer copy/move constructors (#3809).
  • Fix compilation if only including mlpack/methods/kde/kde_model.hpp (#3800).
  • Fix serialization and MinDistance() bugs with HollowBallBound (#3808).

mlpack 4.5.0

18 Sep 13:09

Choose a tag to compare

Released September 18, 2024.

  • Distribute STB headers as part of R package (#3724, #3726).
  • Added OpenMP parallelization to Hamerly, Naive, and Elkan k-means (#3761, #3762, #3764).
  • Added OpenMP support for fast approximation (#3685).
  • Implemented the Find and Fill algorithm into the Dropout Layer and added OpenMP support (#3684).
  • Update Python bindings to support NumPy 2.x (#3752).
  • Bump minimum Armadillo version to 10.8 (#3760).
  • Adapt NearestInterpolation ANN layer to new Layer Interface (#3768).
  • Add support for arbitrary matrix types to Radical and deprecate Radical::DoRadical() in favor of Radical::Apply() (#3787).

mlpack 4.4.0

28 May 21:17

Choose a tag to compare

Released May 28, 2024.

  • Add print_training_accuracy option to LogisticRegression bindings (#3552).
  • Fix preprocess_split() call in documentation for LinearRegression and AdaBoost Python classes (#3563).
  • Added Repeat ANN layer type (#3565).
  • Remove round() implementation for old MSVC compilers (#3570).
  • (R) Added inline plugin to the R bindings to allow for other R packages to link to headers (#3626, h/t @cgiachalis).
  • (R) Removed extra gcc-specific options from Makevars.win (#3627, h/t @kalibera).
  • (R) Changed roxygen package-level documentation from using @docType package to "_PACKAGE". (#3636)
  • Fix floating-point accuracy issue for decision trees that sometimes caused crashes (#3595).
  • Use templates metaprog to distinguish between a matrix and a cube type (#3602), (#3585).
  • Use MatType instead of arma::Mat<eT>, (#3567), (#3607), (#3608), (#3609), (#3568).
  • Generalize matrix operations for armadillo and bandicoot, (#3619), (#3617), (#3610), (#3643), (#3600), (#3605), (#3629).
  • Change arma::conv_to to ConvTo using a local shim for bandicoot support (#3614).
  • Fix a bug for the stddev and mean in RandNormal() #(3651).
  • Allow PCA to take different matrix types (#3677).
  • Fix usage of precompiled headers; remove cotire (#3635).
  • Fix non-working verbose option for R bindings (#3691), and add global mlpack.verbose option (#3706).
  • Fix divide-by-zero edge case for LARS (#3701).
  • Templatize SparseCoding and LocalCoordinateCoding to allow different matrix types (#3709, #3711).
  • Fix handling of unused atoms in LocalCoordinateCoding (#3711).
  • Move minimum required C++ version from C++14 to C++17 (#3704).

mlpack 4.3.0

27 Nov 18:45

Choose a tag to compare

Released Nov. 27, 2023.

  • Fix include ordering issue for LinearRegression (#3541).
  • Fix L1 regularization in case where weight is zero (#3545).
  • Use HTTPS for all auto-downloaded dependencies (#3550).
  • More robust detection of C++17 mode in the MSVC "compiler" (#3555, #3557).
  • Fix setting number of classes correctly in SoftmaxRegression::Train() (#3553).
  • Adapt MultiheadAttention and LayerNorm ANN layers to new Layer interface (#3547).
  • Fix inconsistent use of the "input" parameter to the Backward method in ANNs (#3551).

mlpack 4.2.1

16 Oct 11:06
8ac85f5

Choose a tag to compare

Released Sep. 7, 2023. (Sorry for the late Github release. Forgot to hit the "publish" button.)

  • Reinforcement Learning: Gaussian noise (#3515).
  • Reinforcement Learning: Twin Delayed Deep Deterministic Policy Gradient (#3512).
  • Reinforcement Learning: Ornstein-Uhlenbeck noise (#3499).
  • Reinforcement Learning: Deep Deterministic Policy Gradient (#3494).
  • Add ClassProbabilities() member to DecisionTree so that the internal details of trees can be more easily inspected (#3511).
  • Bipolar sigmoid activation function added and invertible functions fixed (#3506).
  • Add auto-configured mlpack/config.hpp to contain configuration details of mlpack that are required at compile time. STB detection is now done in this file with the MLPACK_HAS_STB macro (#3529).

mlpack 4.2.0

16 Jun 19:48

Choose a tag to compare

Released June 16, 2023.

  • Adapt C_ReLU, ReLU6, FlexibleReLU layer for new neural network API (#3445).
  • Fix PReLU, add integration test to it (#3473).
  • Fix bug in LogSoftMax derivative (#3469).
  • Add serialize method to GaussianInitialization, LecunNormalInitialization, KathirvalavakumarSubavathiInitialization, NguyenWidrowInitialization, and OrthogonalInitialization (#3483).
  • Allow categorical features to preprocess_one_hot_encode (#3487).
  • Install mlpack and cereal headers as part of R package (#3488).
  • Add intercept and normalization support to LARS (#3493).
  • Allow adding two features simultaneously to LARS models (#3493).
  • Adapt FTSwish activation function (#3485).
  • Adapt Hyper-Sinh activation function (#3491).