A high-performance, generalized process pooler and session manager for external language integrations in Elixir
{:snakepit, "~> 0.6"}mix deps.get./deps/snakepit/scripts/setup_python.shThat's it! The script auto-detects uv (fast) or pip (fallback) and installs everything.
cd deps/snakepit/priv/python
pip install -r requirements.txtThen run: mix test to verify everything works.
Snakepit is a battle-tested Elixir library that provides a robust pooling system for managing external processes (Python, Node.js, Ruby, R, etc.). Born from the need for reliable ML/AI integrations, it offers:
- Lightning-fast concurrent initialization - 1000x faster than sequential approaches
 - Session-based execution with automatic worker affinity
 - gRPC-based communication - Modern HTTP/2 protocol with streaming support
 - Native streaming support - Real-time progress updates and progressive results (gRPC)
 - Adapter pattern for any external language/runtime
 - Built on OTP primitives - DynamicSupervisor, Registry, GenServer
 - Production-ready with telemetry, health checks, and graceful shutdowns
 
- What's New in v0.6.7
 - What's New in v0.6.6
 - What's New in v0.6.5
 - What's New in v0.6.4
 - What's New in v0.6.3
 - What's New in v0.6.2
 - What's New in v0.6.1
 - What's New in v0.6.0
 - Breaking Changes (v0.5.0)
 - What's New in v0.5.1
 - What's New in v0.5
 - Quick Start
 - Installation
 - Core Concepts
 - Configuration
 - Usage Examples
 - gRPC Communication
 - Python Bridges
 - Built-in Adapters
 - Creating Custom Adapters
 - Session Management
 - Monitoring & Telemetry
 - Architecture Deep Dive
 - Performance
 - Troubleshooting
 - Contributing
 
The DSPy-specific integration (snakepit_bridge.dspy_integration) has been removed in v0.5.0 (deprecated in v0.4.3).
Why? Following clean architecture principles:
- Snakepit is a generic Python bridge (like JDBC for databases)
 - DSPy is a domain-specific library for prompt programming
 - Domain logic belongs in applications (DSPex), not infrastructure (Snakepit)
 
Affected Code If you're importing these classes from Snakepit:
from snakepit_bridge.dspy_integration import (
    VariableAwarePredict,
    VariableAwareChainOfThought,
    VariableAwareReAct,
    VariableAwareProgramOfThought,
)Migration Path For DSPex users, update your imports to:
from dspex_adapters.dspy_variable_integration import (
    VariableAwarePredict,
    VariableAwareChainOfThought,
    VariableAwareReAct,
    VariableAwareProgramOfThought,
)No API changes - it's a drop-in replacement.
For non-DSPex users, if you're using these classes directly:
- Option A: Switch to DSPex for DSPy integration
 - Option B: Copy the code to your project before v0.5.0
 - Option C: Pin Snakepit to 
~> 0.4.3(not recommended) 
Timeline
- v0.4.3 (Oct 2025): Deprecation warnings added, code still works
 - v0.5.0 (Oct 2025): DSPy integration removed from Snakepit
 
Documentation
Note: VariableAwareMixin (the base mixin) remains in Snakepit as it's generic and useful for any Python integration, not just DSPy.
Type system + performance + distributed telemetry β v0.6.7 delivers two major enhancements: Phase 1 of the type system improvements with 6x performance boost, and a complete distributed telemetry system for full observability across Elixir clusters and Python workers.
- 6x JSON performance β Python bridge now uses 
orjsonfor serialization, delivering 4-6x speedup for raw JSON operations and 1.5x improvement for large payloads with full backward compatibility (priv/python/tests/test_orjson_integration.py). - Structured error types β New 
Snakepit.Errorstruct provides detailed context for debugging with fields likecategory,message,details,python_traceback, andgrpc_status(lib/snakepit/error.ex,test/unit/error_test.exs). - Complete type specifications β All public API functions in 
Snakepitmodule now have@specannotations with structured error return types for better IDE support and Dialyzer analysis. 
- Bidirectional telemetry streaming β Python workers emit events via gRPC that are re-emitted as Elixir 
:telemetryevents for unified observability across your entire stack. - 43 telemetry events β Complete event catalog across 3 layers (Infrastructure, Python Execution, gRPC Bridge) with atom-safe event names.
 - Python telemetry API β High-level API with 
telemetry.emit()andtelemetry.span()for automatic timing, plus correlation ID propagation. - Runtime control β Adjust sampling rates, enable/disable telemetry, and filter events for individual workers without restarts.
 - Integration ready β Works seamlessly with Prometheus, StatsD, OpenTelemetry, and other monitoring tools via 
:telemetry.attach(). - High performance β <10ΞΌs overhead per event, <1% CPU impact at 100% sampling, with bounded queues and graceful degradation.
 
See TELEMETRY.md for the complete telemetry guide with usage examples and integration patterns.
Zero breaking changes β All 235+ existing tests pass; full backward compatibility maintained while adding new functionality.
Bridge resilience + defensive defaults β v0.6.6 closes the last gaps from the critical bug sweep and documents the new reliability posture across the stack.
- Persistent worker ports & channel reuse β gRPC workers now cache the OS-assigned port and BridgeServer reuses the worker-owned channel before dialing a fallback, eliminating connection churn (
test/unit/grpc/grpc_worker_ephemeral_port_test.exs,test/snakepit/grpc/bridge_server_test.exs). - Hardened registries & quotas β ETS tables ship with 
:protectedvisibility and DETS handles stay private while SessionStore enforces session/program quotas (test/unit/pool/process_registry_security_test.exs,test/unit/bridge/session_store_test.exs). - Strict parameter validation β Tool invocations fail fast with descriptive errors when protobuf payloads contain malformed JSON or when parameters cannot be JSON encoded, keeping both client and server paths crash-free (
test/snakepit/grpc/bridge_server_test.exs,test/unit/grpc/client_impl_test.exs). - Actionable streaming fallback β When streaming support is disabled, 
BridgeServer.execute_streaming_tool/2now returns anUNIMPLEMENTEDRPC error with remediation hints so callers can downgrade gracefully (test/snakepit/grpc/bridge_server_test.exs). - Metadata-driven pool routing β Worker registry entries publish pool identifiers so the pool manager resolves ownership without brittle string parsing; fallbacks log once for malformed IDs (
test/unit/pool/pool_registry_lookup_test.exs). - Streaming chunk contract β The streaming callback now receives consistent 
chunk_id/data/is_finalpayloads with metadata fan-out, documented alongside regression coverage (test/snakepit/streaming_regression_test.exs). - Redacted diagnostics β the logger redaction helper now summarises sensitive payloads instead of dumping secrets or large blobs into logs (
test/unit/logger/redaction_test.exs). 
Release safety + lifecycle hardening β v0.6.5 fixes production boot regressions and closes gaps in worker shutdown so pools behave predictably during restarts.
- Release-friendly application start β 
Snakepit.Applicationno longer callsMix.env/0, letting OTP releases boot without bundling Mix. - Accurate worker teardown β 
Snakepit.Pool.WorkerSupervisor.stop_worker/1now targets the worker starter supervisor and accepts either worker ids or pids, preventing leaking processes. - Profile parity β Process and threaded worker profiles resolve worker ids through the registry so lifecycle manager shutdowns succeed regardless of handle type.
 - Regression coverage β Added unit suites covering supervisor stop/restart behaviour and profile-level shutdown helpers.
 - Config-friendly thread limits β Partial overrides of 
:python_thread_limitsmerge with defaults, keeping startup resilient while allowing fine-grained tuning. 
Streaming stability + tooling β v0.6.4 polishes the gRPC streaming path and supporting tooling so real-time updates flow as expected.
- Chunk-by-chunk pacing β Python bridge servers now yield streaming results incrementally, decoding payloads on the Elixir side with 
is_final, metadata, and callback guardrails. - Showcase improvements β 
stream_progresssupports configurable pacing and elapsed timings;examples/stream_progress_demo.exsprints rich updates. - Regression guard β Added 
test/snakepit/streaming_regression_test.exsplus Python coverage executed via the new helper script. - Instant pytest runs β 
./test_python.shregenerates protobuf stubs, activates.venv, wiresPYTHONPATH, and forwards args topytest. 
Flexible Heartbeat Failure Handling - v0.6.3 introduces dependent/independent heartbeat modes, allowing workers to optionally continue running when Elixir heartbeats fail. Perfect for debugging scenarios or when you want Python workers to remain alive despite connectivity issues.
- Heartbeat Independence Mode - New 
dependent: falseconfiguration option allows workers to survive heartbeat failures - Environment-based Configuration - Heartbeat settings now passed via 
SNAKEPIT_HEARTBEAT_CONFIGenvironment variable - Python Test Coverage - Added comprehensive unit tests for dependent heartbeat termination behavior
 - Default Heartbeat Enabled - Heartbeat monitoring now enabled by default for better production reliability
 
See the CHANGELOG for complete details.
- Workers now shut down automatically when their heartbeat monitor crashes, ensuring unhealthy Python processes never get reused
 - Added end-to-end regression coverage that exercises missed heartbeat scenarios, validates registry cleanup, and confirms OS-level process termination
 - Extended heartbeat monitor regression guards to watch for drift across sustained ping/pong cycles
 
- Python bridge regression now verifies outbound metadata preserves correlation identifiers when proxying requests back to Elixir
 - Expanded telemetry fixtures and test harnesses surface misconfigurations by defaulting 
SNAKEPIT_OTEL_CONSOLEto disabled during tests 
make testhonors your project virtualenv, exportsPYTHONPATH, and runsmix test --colorfor consistent local feedback loops- Added heartbeat & observability deep-dive notes plus a consolidated testing command crib sheet under 
docs/20251019/ 
Snakepit v0.6.1 introduces fine-grained control over internal logging for cleaner output in production and demo environments.
- Centralized Log Control: New 
Snakepit.Loggermodule provides consistent logging across all internal modules - Application-Level Configuration: Simple 
:log_levelsetting controls all Snakepit logs - Five Log Levels: 
:debug,:info,:warning,:error,:none - No Breaking Changes: Defaults to 
:infolevel for backward compatibility 
Clean Output (Recommended for Production/Demos):
# config/config.exs
config :snakepit,
  log_level: :warning,  # Only warnings and errors
  adapter_module: Snakepit.Adapters.GRPCPython,
  pool_config: %{pool_size: 8}
# Also suppress gRPC logs
config :logger,
  level: :warning,
  compile_time_purge_matching: [
    [application: :grpc, level_lower_than: :error]
  ]Verbose Logging (Development/Debugging):
# config/dev.exs
config :snakepit,
  log_level: :debug  # See everything
config :logger, level: :debugComplete Silence:
config :snakepit,
  log_level: :none  # No Snakepit logs at allWith log_level: :warning:
- β Worker initialization messages
 - β Pool startup progress
 - β Session creation logs
 - β gRPC connection details
 - β Tool registration confirmations
 - β Warnings and errors (still shown)
 
Updated 25+ internal modules to use Snakepit.Logger:
Snakepit.Config- Configuration validationSnakepit.Pool.*- Pool management, worker lifecycleSnakepit.Bridge.*- Session and tool managementSnakepit.GRPC.*- gRPC communicationSnakepit.Adapters.*- Adapter implementationsSnakepit.Worker.*- Worker lifecycleSnakepit.Telemetry- Monitoring and metrics
- Cleaner Demos: Show only your application output, not infrastructure logs
 - Production Ready: Reduce log volume in production environments
 - Flexible Debugging: Turn on verbose logs when troubleshooting
 - Selective Visibility: Keep important warnings/errors while hiding noise
 
- New 
Snakepit.Telemetry.OpenTelemetryboots OTLP exporters whenSNAKEPIT_ENABLE_OTLP=true - Prometheus metrics server via 
Snakepit.TelemetryMetrics, covering heartbeat and worker execution stats - Configurable exporters, ports, and resource attributes from 
config/config.exs - Expanded docs set in 
ARCHITECTURE.mdand new design blueprints for v0.7/v0.8 planning 
Snakepit.HeartbeatMonitortracks per-worker liveness with configurable ping cadence and tolerances- gRPC worker now emits heartbeat and execution telemetry, including tracing spans and correlation IDs
 - Python bridge ships heartbeat helpers and refactored threaded server instrumentation
 - New end-to-end tests exercise heartbeat failure detection and recovery paths
 
- Added 
snakepit_bridge.telemetrywith OTLP-ready metrics and structured logging - gRPC servers expose detailed request accounting, streaming stats, and thread usage insights
 - Telemetry unit tests guard the Python adapters and ensure compatibility across execution modes
 
config/config.exsnow ships safe defaults for OTLP, Prometheus, and heartbeat envelopes- Sample scripts updated with new monitoring stories, plus fresh dual-mode demos and telemetry walkthroughs
 - Additional docs under 
docs/2025101x/capture upgrade strategies, design prompts, and heartbeat rollout guides 
Snakepit v0.6.0 introduces a transformative dual-mode architecture enabling you to choose between multi-process workers (proven stability) and multi-threaded workers (Python 3.13+ free-threading). This positions Snakepit as the definitive Elixir/Python bridge for the next decade of ML/AI workloads.
- Many single-threaded Python processes
 - Process isolation and GIL compatibility
 - Best for: I/O-bound workloads, high concurrency, legacy Python (β€3.12), thread-unsafe libraries
 - Proven: Battle-tested in v0.5.x with 250+ worker pools
 
- Few multi-threaded Python processes with shared memory
 - True CPU parallelism via free-threading (GIL-free)
 - Best for: CPU-bound workloads, Python 3.13+, large shared data (models, tensors)
 - Performance: Up to 9.4Γ memory savings, 4Γ CPU throughput
 
Automatic worker recycling prevents memory leaks and ensures long-running pool health:
- TTL-based recycling: Workers automatically restart after configurable time (e.g., 2 hours)
 - Request-count recycling: Refresh workers after N requests (e.g., 5000 requests)
 - Memory threshold recycling: Recycle if worker memory exceeds limit (optional)
 - Graceful replacement: Zero-downtime worker rotation
 - Health monitoring: Periodic checks with automatic failure detection
 
config :snakepit,
  pools: [
    %{
      name: :default,
      worker_profile: :process,
      pool_size: 100,
      worker_ttl: {3600, :seconds},      # Recycle after 1 hour
      worker_max_requests: 5000          # Or after 5000 requests
    }
  ]Production-grade observability for your worker pools:
# Interactive pool inspection
mix snakepit.profile_inspector
# Get optimization recommendations
mix snakepit.profile_inspector --recommendations
# Detailed worker stats
mix snakepit.profile_inspector --detailed
# JSON output for automation
mix snakepit.profile_inspector --format json# System-wide scaling analysis with profile comparison
mix diagnose.scalingWorker Lifecycle:
[:snakepit, :worker, :recycled]
# Measurements: none
# Metadata: %{worker_id, pool, reason, uptime, request_count}
[:snakepit, :worker, :health_check_failed]
# Measurements: none
# Metadata: %{worker_id, pool, error}Pool Monitoring:
[:snakepit, :pool, :saturated]
# Measurements: %{queue_size, max_queue_size}
# Metadata: %{pool, available_workers, busy_workers}
[:snakepit, :pool, :capacity_reached]
# Measurements: %{capacity, load}
# Metadata: %{worker_pid, profile, rejected}Request Tracking:
[:snakepit, :request, :executed]
# Measurements: %{duration_us}
# Metadata: %{pool, worker_id, command, success}
[:snakepit, :worker, :initialized]
# Measurements: %{initialization_time}
# Metadata: %{worker_id, pool}See docs/telemetry_events.md for complete reference with usage examples.
Full support for Python's GIL removal (PEP 703):
- Automatic detection: Snakepit detects Python 3.13+ free-threading support
 - Thread-safe adapters: Built-in 
ThreadSafeAdapterbase class with locking primitives - Safety validation: Runtime 
ThreadSafetyCheckerdetects concurrent access issues - Library compatibility: Documented compatibility for 20+ popular libraries
 - Three proven patterns: Shared read-only, thread-local storage, locked mutable state
 
NumPy, PyTorch, TensorFlow, Scikit-learn, XGBoost, Transformers, Requests, Polars
Pandas, Matplotlib, SQLite3 (use with locking or process profile)
Powerful multi-pool configuration with profile selection:
# Legacy single-pool config (still works!)
config :snakepit,
  pooling_enabled: true,
  adapter_module: Snakepit.Adapters.GRPCPython,
  pool_size: 100
# New multi-pool config with different profiles
config :snakepit,
  pools: [
    # API workloads: Process profile for high concurrency
    %{
      name: :api_pool,
      worker_profile: :process,
      pool_size: 100,
      adapter_module: Snakepit.Adapters.GRPCPython,
      worker_ttl: {7200, :seconds}
    },
    # CPU workloads: Thread profile for Python 3.13+
    %{
      name: :compute_pool,
      worker_profile: :thread,
      pool_size: 4,
      threads_per_worker: 16,
      adapter_module: Snakepit.Adapters.GRPCPython,
      adapter_args: ["--max-workers", "16"],
      worker_ttl: {3600, :seconds},
      worker_max_requests: 1000
    }
  ]Elixir:
Snakepit.WorkerProfile- Behavior for pluggable parallelism strategiesSnakepit.WorkerProfile.Process- Multi-process profileSnakepit.WorkerProfile.Thread- Multi-threaded profileSnakepit.Worker.LifecycleManager- Automatic worker recyclingSnakepit.Diagnostics.ProfileInspector- Pool inspectionSnakepit.Config- Multi-pool configurationSnakepit.Compatibility- Thread-safety databaseSnakepit.PythonVersion- Python 3.13+ detectionmix snakepit.profile_inspector- Pool inspection Mix task- Enhanced 
mix diagnose.scaling- Profile-aware scaling analysis 
Python:
grpc_server_threaded.py- Multi-threaded gRPC serverbase_adapter_threaded.py- Thread-safe adapter basethread_safety_checker.py- Runtime validation toolkitthreaded_showcase.py- Thread-safe patterns showcase
Documentation:
README_THREADING.md- Comprehensive threading guidedocs/migration_v0.5_to_v0.6.md- Migration guidedocs/performance_benchmarks.md- Quantified improvementsdocs/guides/writing_thread_safe_adapters.md- Complete tutorialdocs/telemetry_events.md- Telemetry reference
100 concurrent operations:
  Process Profile: 15.0 GB (100 processes)
  Thread Profile:   1.6 GB (4 processes Γ 16 threads)
  Savings: 9.4Γ reduction!
Data processing jobs:
  Process Profile:   600 jobs/hour
  Thread Profile:  2,400 jobs/hour
  Improvement: 4Γ faster!
Pool initialization:
  Process Profile: 60s (100 workers, batched)
  Thread Profile:  24s (4 workers, fast threads)
  Improvement: 2.5Γ faster
100% backward compatible with v0.5.x - your existing code works unchanged:
# All v0.5.x configurations continue to work exactly as before
config :snakepit,
  pooling_enabled: true,
  adapter_module: Snakepit.Adapters.GRPCPython,
  pool_size: 100
# API calls unchanged
{:ok, result} = Snakepit.execute("ping", %{})Extensive new documentation covering all features:
- Migration Guide - Zero-friction upgrade path
 - Performance Benchmarks - Quantified improvements
 - Thread Safety Guide - Complete tutorial
 - Telemetry Reference - Monitoring integration
 - Python Threading Guide - Python developer tutorial
 
- β Python β€3.12 (GIL present)
 - β I/O-bound workloads (APIs, web scraping, database queries)
 - β High concurrency needs (100-250 workers)
 - β Thread-unsafe libraries (Pandas, Matplotlib, SQLite3)
 - β Maximum process isolation
 
- β Python 3.13+ with free-threading
 - β CPU-bound workloads (ML inference, data processing, numerical computation)
 - β Large shared data (models, configurations, lookup tables)
 - β Memory constraints (shared interpreter saves RAM)
 - β Thread-safe libraries (NumPy, PyTorch, Scikit-learn)
 
Run different workload types in separate pools with appropriate profiles!
# 1. Update dependency
    {:snakepit, "~> 0.6.7"}
# 2. No config changes required! But consider adding:
config :snakepit,
  pooling_enabled: true,
  pool_config: %{
    worker_ttl: {3600, :seconds},      # Prevent memory leaks
    worker_max_requests: 5000          # Automatic worker refresh
  }
# 3. Your code works unchanged
{:ok, result} = Snakepit.execute("command", %{})# Adopt thread profile for CPU workloads
config :snakepit,
  pools: [
    %{
      name: :default,
      worker_profile: :thread,
      pool_size: 4,
      threads_per_worker: 16,
      adapter_module: Snakepit.Adapters.GRPCPython,
      adapter_args: ["--max-workers", "16"]
    }
  ]Dual-Mode (3 examples):
examples/dual_mode/process_vs_thread_comparison.exs- Side-by-side performance comparisonexamples/dual_mode/hybrid_pools.exs- Multiple pools with different profilesexamples/dual_mode/gil_aware_selection.exs- Automatic Python version detection
Lifecycle (1 example):
examples/lifecycle/ttl_recycling_demo.exs- TTL-based worker recycling demonstration
Monitoring (1 example):
examples/monitoring/telemetry_integration.exs- Telemetry setup and integration examples
Threading (1 example):
examples/threaded_profile_demo.exs- Thread profile configuration patterns
Utility:
examples/run_examples.exs- Automated example runner with status reporting
- New Modules: 14 Elixir files, 5 Python files
 - Test Coverage: 43 unit tests (93% pass rate) + 9 new test files
 - Example Scripts: 7 new working demos
 - Breaking Changes: ZERO
 - Backward Compatibility: 100%
 
- Phase 1 β Complete - Foundation modules and behaviors defined
 - Phase 2 β Complete - Multi-threaded Python worker implementation
 - Phase 3 β Complete - Elixir thread profile integration
 - Phase 4 β Complete - Worker lifecycle management and recycling
 - Phase 5 β Complete - Enhanced diagnostics and monitoring
 - Phase 6 π In Progress - Additional documentation and examples
 
- 43 unit tests with 93% pass rate
 - 9 new test files for v0.6.0 features:
test/snakepit/compatibility_test.exs- Library compatibility matrixtest/snakepit/config_test.exs- Multi-pool configurationtest/snakepit/integration_test.exs- End-to-end integrationtest/snakepit/multi_pool_execution_test.exs- Multi-pool executiontest/snakepit/pool_multipool_integration_test.exs- Pool integrationtest/snakepit/python_version_test.exs- Python detectiontest/snakepit/thread_profile_python313_test.exs- Python 3.13 threadingtest/snakepit/worker_profile/process_test.exs- Process profiletest/snakepit/worker_profile/thread_test.exs- Thread profile
 - Comprehensive integration tests for multi-pool execution
 - Python 3.13 free-threading compatibility tests
 - Thread profile capacity management tests
 
- Fixed worker pool scaling limits - Pool now reliably scales to 250+ workers (previously limited to ~105)
 - Resolved thread explosion during concurrent startup - Fixed "fork bomb" caused by Python scientific libraries spawning excessive threads
 - Dynamic port allocation - Workers now use OS-assigned ports (port=0) eliminating port collision races
 - Batched worker startup - Configurable batch size and delay prevents system resource exhaustion
 - Enhanced resource limits - Added max_workers safeguard (1000) with comprehensive warnings
 - New diagnostic tools - Added 
mix diagnose.scalingtask for bottleneck analysis 
- Aggressive thread limiting - Set 
OPENBLAS_NUM_THREADS=1,OMP_NUM_THREADS=1,MKL_NUM_THREADS=1for optimal pool-level parallelism - Batched startup configuration - 
startup_batch_size: 8,startup_batch_delay_ms: 750 - Increased resource limits - Extended 
port_range: 1000, GRPC backlog: 512, worker timeout: 30s - Explicit port range constraints - Added configuration documentation and validation
 
- Successfully tested with 250 workers - Validated reliable operation at 2.5x previous limit
 - Eliminated port collision races - Dynamic port allocation prevents startup failures
 - Improved error diagnostics - Better logging and resource tracking during pool initialization
 - Enhanced GRPC server - Better port binding error handling and connection management
 
- Startup time increases with large pools (~60s for 250 workers vs ~10s for 100 workers)
 - Thread limiting optimizes for high concurrency; CPU-intensive tasks per worker may need adjustment
 - See commit dc67572 for detailed technical analysis and future considerations
 
- DSPy Integration Removed - As announced in v0.4.3
- Removed deprecated 
dspy_integration.pymodule - Removed deprecated 
types.pywith VariableType enum - Users must migrate to DSPex for DSPy functionality
 - See migration guide in deprecation notice above
 
 - Removed deprecated 
 
- Comprehensive test improvements
- Added Supertester refactoring plan and Phase 1 foundation
 - New 
assert_eventuallyhelper for deterministic async testing - Increased test coverage from 27 to 51 tests (+89%)
 - 37 Elixir tests + 15 Python tests passing
 
 
- Removed dead code and obsolete modules
- Streamlined Python SessionContext
 - Deleted obsolete backup files and unused modules
 - Cleaned up test infrastructure
 - Created Python test infrastructure with 
test_python.sh 
 
- Phase 1 completion report with detailed test results
 - Python cleanup and testing infrastructure summary
 - Enhanced test planning documentation
 
- Removed dead code - Deleted unused modules and aspirational APIs
 - Fixed adapter defaults - ShowcaseAdapter now default (fully functional)
 - DETS cleanup optimization - Prevents indefinite growth, fast startup
 - Atomic session creation - Eliminates race condition error logs
 - Python venv auto-detection - Automatically finds .venv for development
 - Issue #2 addressed - Simplified OTP patterns, removed redundant checks
 
- Complete installation guide - Platform-specific (Ubuntu, macOS, WSL, Docker)
 - ADR-001 - Architecture Decision Record for Worker.Starter pattern
 - External process supervision design - Multi-mode architecture (coupled, supervised, independent, distributed)
 - Issue #2 critical review - Comprehensive response to community feedback
 - Adapter selection guide - Clear explanation of TemplateAdapter vs ShowcaseAdapter
 - Example status clarity - Working vs WIP examples clearly marked
 
- Fixed ProcessRegistry DETS accumulation (1994+ stale entries)
 - Fixed race condition in concurrent session initialization
 - Fixed resource cleanup race (wait_for_worker_cleanup checked dead PID instead of actual resources)
 - Fixed example parameter mismatches
 - Fixed all ExDoc documentation warnings
 - Removed catch-all rescue clause (follows "let it crash")
 
- 100 workers: ~3 seconds initialization
 - 1400-1500 operations/second sustained
 - DETS cleanup: O(1) vs O(n) process checks
 
- New 
process_texttool - Text processing with upper, lower, reverse, length operations - New 
get_statstool - Real-time adapter and system monitoring with memory/CPU usage - Fixed gRPC tool registration - Resolved async/sync issues with UnaryUnaryCall objects
 - Automatic session initialization - Sessions created automatically when Python tools register
 
- Remote tool dispatch - Complete bidirectional communication between Elixir and Python
 - Missing tool recovery - Added adapter_info, echo, process_text, get_stats to ShowcaseAdapter
 - Async/sync compatibility - Fixed gRPC stub handling with proper response processing
 - Enhanced error handling - Better diagnostics for tool registration failures
 
- Persistent process tracking with DETS storage survives BEAM crashes
 - Automatic orphan cleanup - no more zombie Python processes
 - Pre-registration pattern - Prevents orphans even during startup crashes
 - Immediate DETS persistence - No data loss on abrupt termination
 - Zero-configuration reliability - works out of the box
 - Production-ready - handles VM crashes, OOM kills, and power failures
 - See Process Management Documentation for details
 
- Real-time progress updates for long-running operations
 - HTTP/2 multiplexing for concurrent requests
 - Cancellable operations with graceful stream termination
 - Built-in health checks and rich error handling
 
- Automatic binary encoding for tensors and embeddings > 10KB
 - 5-10x faster than JSON for large numerical arrays
 - Zero configuration - works automatically
 - Backward compatible - smaller data still uses JSON
 - Modern architecture with protocol buffers
 
- Efficient binary transfers with protocol buffers
 - HTTP/2 multiplexing for concurrent operations
 - Native binary data handling perfect for ML models and images
 - 18-36% smaller message sizes for improved performance
 
- Complete example app at 
examples/snakepit_showcase - Demonstrates all features including binary serialization
 - Performance benchmarks showing 5-10x speedup
 - Ready-to-run demos for all Snakepit capabilities
 
- Production-ready packaging with pip install support
 - Enhanced error handling and robust shutdown management
 - Console script integration for deployment flexibility
 - Type checking support with proper py.typed markers
 
- Deprecated V1 Python bridge in favor of V2 architecture
 - Updated demo implementations using latest best practices
 - Comprehensive documentation for all bridge implementations
 - Backward compatibility maintained for existing integrations
 
- Cross-language function execution - Call Python from Elixir and vice versa
 - Transparent tool proxying - Remote functions appear as local functions
 - Session-scoped isolation - Tools are isolated by session for multi-tenancy
 - Dynamic discovery - Automatic tool discovery and registration
 - See Bidirectional Tool Bridge Documentation for details
 
# In your mix.exs
def deps do
  [
    {:snakepit, "~> 0.5.1"}
  ]
end
# Configure with gRPC adapter
Application.put_env(:snakepit, :pooling_enabled, true)
Application.put_env(:snakepit, :adapter_module, Snakepit.Adapters.GRPCPython)
Application.put_env(:snakepit, :grpc_config, %{
  base_port: 50051,
  port_range: 100
})
Application.put_env(:snakepit, :pool_config, %{pool_size: 4})
{:ok, _} = Application.ensure_all_started(:snakepit)
# Execute commands with gRPC
{:ok, result} = Snakepit.execute("ping", %{test: true})
{:ok, result} = Snakepit.execute("compute", %{operation: "add", a: 5, b: 3})
# Session-based execution (maintains state)
{:ok, result} = Snakepit.execute_in_session("user_123", "echo", %{message: "hello"})
# Streaming operations for real-time updates
Snakepit.execute_stream("batch_process", %{items: [1, 2, 3]}, fn chunk ->
  IO.puts("Progress: #{chunk["progress"]}%")
end)def deps do
  [
    {:snakepit, "~> 0.5.1"}
  ]
enddef deps do
  [
    {:snakepit, github: "nshkrdotcom/snakepit"}
  ]
end- Elixir 1.18+
 - Erlang/OTP 27+
 - External runtime (Python 3.8+, Node.js 16+, etc.) depending on adapter
 
Note: For detailed installation instructions (including platform-specific guides for Ubuntu, macOS, Windows/WSL, Docker, virtual environments, and troubleshooting), see the Complete Installation Guide.
For Python/gRPC integration (recommended):
# Using uv (recommended - faster and more reliable)
uv pip install grpcio grpcio-tools protobuf numpy
# Or use pip as fallback
pip install grpcio grpcio-tools protobuf numpy
# Using requirements file with uv
cd deps/snakepit/priv/python
uv pip install -r requirements.txt
# Or with pip
pip install -r requirements.txtAutomated Setup (Recommended):
# Use the setup script (detects uv/pip automatically)
./scripts/setup_python.shManual Setup:
# Create venv and install with uv (fastest)
python3 -m venv .venv
source .venv/bin/activate
uv pip install -r deps/snakepit/priv/python/requirements.txt
# Or with pip
pip install -r deps/snakepit/priv/python/requirements.txt# Generate Python gRPC code
make proto-python
# This creates the necessary gRPC stubs in priv/python/Add to your config/config.exs:
config :snakepit,
  # Enable pooling (recommended for production)
  pooling_enabled: true,
  
  # Choose your adapter
  adapter_module: Snakepit.Adapters.GRPCPython,
  
  # Pool configuration
  pool_config: %{
    pool_size: System.schedulers_online() * 2,
    startup_timeout: 10_000,
    max_queue_size: 1000
  },
  
  # gRPC configuration
  grpc_config: %{
    base_port: 50051,
    port_range: 100,
    connect_timeout: 5_000
  },
  
  # Session configuration
  session_config: %{
    ttl: 3600,  # 1 hour default
    cleanup_interval: 60_000  # 1 minute
  }In your application supervisor:
defmodule MyApp.Application do
  use Application
  def start(_type, _args) do
    children = [
      # Other children...
      {Snakepit.Application, []}
    ]
    opts = [strategy: :one_for_one, name: MyApp.Supervisor]
    Supervisor.start_link(children, opts)
  end
endOr start manually:
{:ok, _} = Application.ensure_all_started(:snakepit)# Verify Python dependencies
python3 -c "import grpc; print('gRPC installed:', grpc.__version__)"
# Run tests
mix test
# Try an example
elixir examples/grpc_basic.exsExpected output: Should see gRPC connections and successful command execution.
Troubleshooting: If you see
ModuleNotFoundError: No module named 'grpc', the Python dependencies aren't installed. See Installation Guide for help.
For custom Python functionality:
# priv/python/my_adapter.py
from snakepit_bridge.adapters.base import BaseAdapter
class MyAdapter(BaseAdapter):
    def __init__(self):
        super().__init__()
        # Initialize your libraries here
        
    async def execute_my_command(self, args):
        # Your custom logic
        result = do_something(args)
        return {"status": "success", "result": result}Configure it:
# config/config.exs
config :snakepit,
  adapter_module: Snakepit.Adapters.GRPCPython,
  python_adapter: "my_adapter:MyAdapter"# In IEx
iex> Snakepit.execute("ping", %{})
{:ok, %{"status" => "pong", "timestamp" => 1234567890}}Adapters define how Snakepit communicates with external processes. They specify:
- The runtime executable (python3, node, ruby, etc.)
 - The bridge script to execute
 - Supported commands and validation
 - Request/response transformations
 
Each worker is a GenServer that:
- Owns one external process via Erlang Port
 - Handles request/response communication
 - Manages health checks and metrics
 - Auto-restarts on crashes
 
The pool manager:
- Starts workers concurrently on initialization
 - Routes requests to available workers
 - Handles queueing when all workers are busy
 - Supports session affinity for stateful operations
 
Sessions provide:
- State persistence across requests
 - Worker affinity (same session prefers same worker)
 - TTL-based expiration
 - Centralized storage in ETS
 
# config/config.exs
config :snakepit,
  pooling_enabled: true,
  adapter_module: Snakepit.Adapters.GRPCPython,  # gRPC-based communication
  # Control Snakepit's internal logging
  # Options: :debug, :info, :warning, :error, :none
  # Set to :warning or :none for clean output in production/demos
  log_level: :info,  # Default (balanced verbosity)
  grpc_config: %{
    base_port: 50051,    # Starting port for gRPC servers
    port_range: 100      # Port range for worker allocation
  },
  pool_config: %{
    pool_size: 8  # Default: System.schedulers_online() * 2
  }
# Optional: Also suppress gRPC library logs
config :logger,
  level: :warning,
  compile_time_purge_matching: [
    [application: :grpc, level_lower_than: :error]
  ]# gRPC-specific configuration
config :snakepit,
  grpc_config: %{
    base_port: 50051,       # Starting port for gRPC servers
    port_range: 100,        # Port range for worker allocation
    connect_timeout: 5000,  # Connection timeout in ms
    request_timeout: 30000  # Default request timeout in ms
  }The gRPC adapter automatically assigns unique ports to each worker within the specified range, ensuring isolation and parallel operation.
config :snakepit,
  # Pool settings
  pooling_enabled: true,
  pool_config: %{
    pool_size: 16
  },
  
  # Adapter
  adapter_module: MyApp.CustomAdapter,
  
  # Timeouts (milliseconds)
  pool_startup_timeout: 10_000,      # Max time for worker initialization
  pool_queue_timeout: 5_000,         # Max time in request queue
  worker_init_timeout: 20_000,       # Max time for worker to respond to init
  worker_health_check_interval: 30_000,  # Health check frequency
  worker_shutdown_grace_period: 2_000,   # Grace period for shutdown
  
  # Cleanup settings
  cleanup_retry_interval: 100,       # Retry interval for cleanup
  cleanup_max_retries: 10,          # Max cleanup retries
  
  # Queue management
  pool_max_queue_size: 1000         # Max queued requests before rejection# Override configuration at runtime
Application.put_env(:snakepit, :adapter_module, Snakepit.Adapters.GenericJavaScript)
Application.stop(:snakepit)
Application.start(:snakepit)Most examples use elixir directly (with Mix.install), but some v0.6.0 demos require the compiled project and use mix run:
# Basic gRPC examples (use elixir)
elixir examples/grpc_basic.exs                 # Simple ping, echo, add operations
elixir examples/grpc_sessions.exs              # Session management patterns
elixir examples/grpc_streaming.exs             # Streaming data operations
elixir examples/grpc_concurrent.exs            # Concurrent execution (default: 4 workers)
elixir examples/grpc_advanced.exs              # Advanced error handling
elixir examples/grpc_streaming_demo.exs        # Real-time streaming demo
# Bidirectional tool bridge (use elixir)
elixir examples/bidirectional_tools_demo.exs       # Interactive demo
elixir examples/bidirectional_tools_demo_auto.exs  # Auto-run server version
# v0.6.0 demos using compiled modules (use mix run)
mix run examples/threaded_profile_demo.exs                      # Thread profile config
mix run examples/dual_mode/process_vs_thread_comparison.exs    # Profile comparison
mix run examples/dual_mode/hybrid_pools.exs                    # Multiple pool profiles
mix run examples/dual_mode/gil_aware_selection.exs             # Auto Python version detection
mix run examples/lifecycle/ttl_recycling_demo.exs              # TTL worker recycling
mix run examples/monitoring/telemetry_integration.exs          # Telemetry setupStatus: 159/159 tests passing (100%) with default Python! All examples are production-ready.
Note: v0.6.0 feature demos access compiled Snakepit modules (Snakepit.PythonVersion, Snakepit.Compatibility, etc.) and require mix run to work properly.
These examples work out-of-the-box with the default ShowcaseAdapter:
# Basic gRPC operations (ping, echo, add)
elixir examples/grpc_basic.exs
# Concurrent execution and pool utilization (default: 4 workers)
elixir examples/grpc_concurrent.exs
# High-concurrency stress test (100 workers)
elixir examples/grpc_concurrent.exs 100
# Bidirectional tool bridge (Elixir β Python tools)
elixir examples/bidirectional_tools_demo.exsPerformance: 1400-1500 ops/sec, 100 workers in ~3 seconds
All v0.6.0 examples showcase configuration patterns and best practices:
# Dual-mode architecture
elixir examples/dual_mode/process_vs_thread_comparison.exs    # Side-by-side comparison
elixir examples/dual_mode/hybrid_pools.exs                    # Multiple pools with different profiles
elixir examples/dual_mode/gil_aware_selection.exs             # Automatic Python 3.13+ detection
# Worker lifecycle management
elixir examples/lifecycle/ttl_recycling_demo.exs              # TTL-based automatic recycling
# Monitoring & telemetry
elixir examples/monitoring/telemetry_integration.exs          # Telemetry events setup
# Thread profile (Python 3.13+ free-threading)
elixir examples/threaded_profile_demo.exs                     # Thread profile configuration patternsThese examples demonstrate advanced features requiring additional tool implementations:
# Session management patterns
elixir examples/grpc_sessions.exs
# Streaming operations
elixir examples/grpc_streaming.exs
elixir examples/grpc_streaming_demo.exs
# Advanced error handling
elixir examples/grpc_advanced.exsNote: Some advanced examples may require custom adapter tools. See Creating Custom Adapters for implementation details.
Prerequisites: Python dependencies installed (see Installation Guide)
# Basic ping/pong
{:ok, result} = Snakepit.execute("ping", %{})
# => %{"status" => "pong", "timestamp" => 1234567890}
# Computation
{:ok, result} = Snakepit.execute("compute", %{
  operation: "multiply",
  a: 7,
  b: 6
})
# => %{"result" => 42}
# With error handling
case Snakepit.execute("risky_operation", %{threshold: 0.5}) do
  {:ok, result} -> 
    IO.puts("Success: #{inspect(result)}")
  {:error, :worker_timeout} -> 
    IO.puts("Operation timed out")
  {:error, {:worker_error, msg}} -> 
    IO.puts("Worker error: #{msg}")
  {:error, reason} -> 
    IO.puts("Failed: #{inspect(reason)}")
endFor short-lived scripts, Mix tasks, or demos that need to execute and exit cleanly, use run_as_script/2:
# In a Mix task or script
Snakepit.run_as_script(fn ->
  # Your code here - all workers will be properly cleaned up on exit
  {:ok, result} = Snakepit.execute("process_data", %{data: large_dataset})
  IO.inspect(result)
end)
# With custom timeout for pool initialization
Snakepit.run_as_script(fn ->
  results = Enum.map(1..100, fn i ->
    {:ok, result} = Snakepit.execute("compute", %{value: i})
    result
  end)
  IO.puts("Processed #{length(results)} items")
end, timeout: 30_000)This ensures:
- The pool waits for all workers to be ready before executing
 - All Python/external processes are properly terminated on exit
 - No orphaned processes remain after your script completes
 
# Create a session with variables
session_id = "analysis_#{UUID.generate()}"
# Initialize session with variables
{:ok, _} = Snakepit.Bridge.SessionStore.create_session(session_id)
{:ok, _} = Snakepit.Bridge.SessionStore.register_variable(
  session_id, 
  "temperature", 
  :float, 
  0.7,
  constraints: %{min: 0.0, max: 1.0}
)
# Execute commands that use session variables
{:ok, result} = Snakepit.execute_in_session(session_id, "generate_text", %{
  prompt: "Tell me about Elixir"
})
# Update variables
:ok = Snakepit.Bridge.SessionStore.update_variable(session_id, "temperature", 0.9)
# List all variables
{:ok, vars} = Snakepit.Bridge.SessionStore.list_variables(session_id)
# Cleanup when done
:ok = Snakepit.Bridge.SessionStore.delete_session(session_id)# Using SessionHelpers for ML program management
alias Snakepit.SessionHelpers
# Create an ML program/model
{:ok, response} = SessionHelpers.execute_program_command(
  "ml_session_123",
  "create_program",
  %{
    signature: "question -> answer",
    model: "gpt-3.5-turbo",
    temperature: 0.7
  }
)
program_id = response["program_id"]
# Execute the program multiple times
{:ok, result} = SessionHelpers.execute_program_command(
  "ml_session_123", 
  "execute_program",
  %{
    program_id: program_id,
    input: %{question: "What is the capital of France?"}
  }
)# Configure gRPC adapter for streaming workloads
Application.put_env(:snakepit, :adapter_module, Snakepit.Adapters.GRPCPython)
Application.put_env(:snakepit, :grpc_config, %{
  base_port: 50051,
  port_range: 100
})
# Process large datasets with streaming
Snakepit.execute_stream("process_dataset", %{
  file_path: "/data/large_dataset.csv",
  chunk_size: 1000
}, fn chunk ->
  if chunk["is_final"] do
    IO.puts("Processing complete: #{chunk["total_processed"]} records")
  else
    IO.puts("Progress: #{chunk["progress"]}% - #{chunk["records_processed"]}/#{chunk["total_records"]}")
  end
end)
# ML inference with real-time results
Snakepit.execute_stream("batch_inference", %{
  model_path: "/models/resnet50.pkl",
  images: ["img1.jpg", "img2.jpg", "img3.jpg"]
}, fn chunk ->
  IO.puts("Processed #{chunk["image"]}: #{chunk["prediction"]} (#{chunk["confidence"]}%)")
end)# Process multiple items in parallel across the pool
items = ["item1", "item2", "item3", "item4", "item5"]
tasks = Enum.map(items, fn item ->
  Task.async(fn ->
    Snakepit.execute("process_item", %{item: item})
  end)
end)
results = Task.await_many(tasks, 30_000)Snakepit supports modern gRPC-based communication for advanced streaming capabilities, real-time progress updates, and superior performance.
# Step 1: Install gRPC dependencies
make install-grpc
# Step 2: Generate protocol buffer code
make proto-python
# Step 3: Test the upgrade
elixir examples/grpc_non_streaming_demo.exs# Replace your adapter configuration with this:
Application.put_env(:snakepit, :adapter_module, Snakepit.Adapters.GRPCPython)
Application.put_env(:snakepit, :grpc_config, %{
  base_port: 50051,
  port_range: 100
})
# ALL your existing API calls work EXACTLY the same
{:ok, result} = Snakepit.execute("ping", %{})
{:ok, result} = Snakepit.execute("compute", %{operation: "add", a: 5, b: 3})
# PLUS you get new streaming capabilities
Snakepit.execute_stream("batch_inference", %{
  batch_items: ["image1.jpg", "image2.jpg", "image3.jpg"]
}, fn chunk ->
  IO.puts("Processed: #{chunk["item"]} - #{chunk["confidence"]}")
end)| Feature | gRPC Non-Streaming | gRPC Streaming | 
|---|---|---|
| Standard API | Full support | Full support | 
| Streaming | No | Real-time | 
| HTTP/2 Multiplexing | Yes | Yes | 
| Progress Updates | No | Live Updates | 
| Health Checks | Built-in | Built-in | 
| Error Handling | Rich Status | Rich Status | 
Snakepit.GRPCWorkerpersists the actual OS-assigned port after handshake, so registry lookups always return a routable endpoint.Snakepit.GRPC.BridgeServerasks the worker for its cachedGRPC.Stub, only dialing a fresh channel if the worker has not yet published oneβeliminating per-call socket churn and cleaning up any fallback channel after use.- Regression guardrails: 
test/unit/grpc/grpc_worker_ephemeral_port_test.exsensures the stored port matches the runtime port, andtest/snakepit/grpc/bridge_server_test.exsverifies BridgeServer prefers the worker-owned channel. 
- Every callback receives a map with decoded JSON, 
"is_final"flag, and optional_metadatafan-out. Binary payloads fall back to Base64 under"raw_data_base64". - Chunk IDs and metadata come straight from 
ToolChunk, so you can correlate progress across languages. - See 
test/snakepit/streaming_regression_test.exsfor ordering guarantees and final chunk assertions. 
Use this for: Standard request-response operations
# Standard API for quick operations
{:ok, result} = Snakepit.execute("ping", %{})
{:ok, result} = Snakepit.execute("compute", %{operation: "multiply", a: 10, b: 5})
{:ok, result} = Snakepit.execute("info", %{})
# Session support works exactly the same
{:ok, result} = Snakepit.execute_in_session("user_123", "echo", %{message: "hello"})When to use:
- You want better performance without changing your code
 - Your operations complete quickly (< 30 seconds)
 - You don't need progress updates
 - Standard request-response pattern
 
Use this for: Long-running operations with real-time progress updates
# NEW streaming API - get results as they complete
Snakepit.execute_stream("batch_inference", %{
  batch_items: ["img1.jpg", "img2.jpg", "img3.jpg"]
}, fn chunk ->
  if chunk["is_final"] do
    IO.puts("All done!")
  else
    IO.puts("Processed: #{chunk["item"]} - #{chunk["confidence"]}")
  end
end)
# Session-based streaming also available
Snakepit.execute_in_session_stream("session_123", "process_large_dataset", %{
  file_path: "/data/huge_file.csv"
}, fn chunk ->
  IO.puts("Progress: #{chunk["progress_percent"]}%")
end)When to use:
- Long-running operations (ML training, data processing)
 - You want real-time progress updates
 - Processing large datasets or batches
 - Better user experience with live feedback
 
# Install gRPC dependencies
make install-grpc
# Generate protocol buffer code
make proto-python
# Verify with non-streaming demo (same as your existing API)
elixir examples/grpc_non_streaming_demo.exs
# Try new streaming capabilities
elixir examples/grpc_streaming_demo.exs# Configure gRPC
Application.put_env(:snakepit, :adapter_module, Snakepit.Adapters.GRPCPython)
Application.put_env(:snakepit, :grpc_config, %{base_port: 50051, port_range: 100})
# All your existing code works unchanged
{:ok, result} = Snakepit.execute("ping", %{})
{:ok, result} = Snakepit.execute("compute", %{operation: "add", a: 5, b: 3})
{:ok, result} = Snakepit.execute("info", %{})
# Sessions work exactly the same
{:ok, result} = Snakepit.execute_in_session("session_123", "echo", %{message: "hello"})
# Try it: elixir examples/grpc_non_streaming_demo.exsML Batch Inference with Real-time Progress:
# Process multiple items, get results as each completes
Snakepit.execute_stream("batch_inference", %{
  model_path: "/models/resnet50.pkl",
  batch_items: ["img1.jpg", "img2.jpg", "img3.jpg"]
}, fn chunk ->
  if chunk["is_final"] do
    IO.puts("All #{chunk["total_processed"]} items complete!")
  else
    IO.puts("#{chunk["item"]}: #{chunk["prediction"]} (#{chunk["confidence"]})")
  end
end)Large Dataset Processing with Progress:
# Process huge datasets, see progress in real-time
Snakepit.execute_stream("process_large_dataset", %{
  file_path: "/data/huge_dataset.csv",
  chunk_size: 5000
}, fn chunk ->
  if chunk["is_final"] do
    IO.puts("Processing complete: #{chunk["final_stats"]}")
  else
    progress = chunk["progress_percent"]
    IO.puts("Progress: #{progress}% (#{chunk["processed_rows"]}/#{chunk["total_rows"]})")
  end
end)Session-based Streaming:
# Streaming with session state
session_id = "ml_training_#{user_id}"
Snakepit.execute_in_session_stream(session_id, "distributed_training", %{
  model_config: training_config,
  dataset_path: "/data/training_set"
}, fn chunk ->
  if chunk["is_final"] do
    model_path = chunk["final_model_path"]
    IO.puts("Training complete! Model saved: #{model_path}")
  else
    epoch = chunk["epoch"]
    loss = chunk["train_loss"]
    acc = chunk["val_acc"]
    IO.puts("Epoch #{epoch}: loss=#{loss}, acc=#{acc}")
  end
end)
# Try it: elixir examples/grpc_streaming_demo.exsgRPC Non-Streaming:
- Better performance: HTTP/2 multiplexing, protocol buffers
 - Built-in health checks: Automatic worker monitoring
 - Rich error handling: Detailed gRPC status codes
 - Zero code changes: Drop-in replacement
 
gRPC Streaming vs Traditional (All Protocols):
- Progressive results: Get updates as work completes
 - Constant memory: Process unlimited data without memory growth
 - Real-time feedback: Users see progress immediately
 - Cancellable operations: Stop long-running tasks mid-stream
 - Better UX: No more "is it still working?" uncertainty
 
Traditional (blocking):  Submit β Wait 10 minutes β Get all results
gRPC Non-streaming:     Submit β Get result faster (better protocol)
gRPC Streaming:         Submit β Get result 1 β Get result 2 β ...
Memory usage:           Fixed vs Grows with result size vs Constant
User experience:        "Wait..." vs "Wait..." vs Real-time updates
Cancellation:           Kill process vs Kill process vs Graceful stream close
Choose your mode based on your needs:
| Your Situation | Recommended Mode | Why | 
|---|---|---|
| Quick operations (< 30s) | gRPC Non-Streaming | Low latency, simple API | 
| Want better performance, same API | gRPC Non-Streaming | Drop-in upgrade | 
| Need progress updates | gRPC Streaming | Real-time feedback | 
| Long-running ML tasks | gRPC Streaming | See progress, cancel if needed | 
| Large dataset processing | gRPC Streaming | Memory efficient | 
Migration path:
Elixir:
# mix.exs
def deps do
  [
    {:grpc, "~> 0.8"},
    {:protobuf, "~> 0.12"},
    # ... other deps
  ]
endPython:
# Using uv (recommended)
uv pip install grpcio protobuf grpcio-tools
# Or with pip
pip install 'snakepit-bridge[grpc]'
# Or manually with uv
uv pip install grpcio protobuf grpcio-tools
# Or manually with pip
pip install grpcio protobuf grpcio-tools| Command | Description | Use Case | 
|---|---|---|
ping_stream | 
Heartbeat stream | Testing, monitoring | 
batch_inference | 
ML model inference | Computer vision, NLP | 
process_large_dataset | 
Data processing | ETL, analytics | 
tail_and_analyze | 
Log analysis | Real-time monitoring | 
distributed_training | 
ML training | Neural networks | 
For comprehensive gRPC documentation, see README_GRPC.md.
Snakepit automatically optimizes large data transfers using binary serialization:
# Small tensor (<10KB) - uses JSON automatically
{:ok, result} = Snakepit.execute("create_tensor", %{
  shape: [10, 10],  # 100 elements = 800 bytes
  name: "small_tensor"
})
# Large tensor (>10KB) - uses binary automatically
{:ok, result} = Snakepit.execute("create_tensor", %{
  shape: [100, 100],  # 10,000 elements = 80KB
  name: "large_tensor"
})
# Performance: 5-10x faster for large data!# Embeddings - automatic binary for large batches
{:ok, embeddings} = Snakepit.execute("generate_embeddings", %{
  texts: ["sentence 1", "sentence 2", ...],  # 100+ sentences
  model: "sentence-transformers/all-MiniLM-L6-v2",
  dimensions: 384
})
# Image processing - binary for pixel data
{:ok, result} = Snakepit.execute("process_images", %{
  images: ["image1.jpg", "image2.jpg"],
  return_tensors: true  # Returns large tensors via binary
})| Data Size | JSON Time | Binary Time | Speedup | 
|---|---|---|---|
| 800B | 12ms | 15ms | 0.8x | 
| 20KB | 45ms | 18ms | 2.5x | 
| 80KB | 156ms | 22ms | 7.1x | 
| 320KB | 642ms | 38ms | 16.9x | 
- Automatic Detection: Data size calculated on serialization
 - Threshold: 10KB (10,240 bytes)
 - Formats:
- Small data: JSON (human-readable, debuggable)
 - Large data: Binary (Pickle on Python, ETF on Elixir)
 
 - Zero Configuration: Works out of the box
 
Explore all Snakepit features with our comprehensive showcase application:
# Navigate to showcase
cd examples/snakepit_showcase
# Install and run
mix setup
mix demo.all
# Or interactive mode
mix demo.interactive- Basic Operations - Health checks, error handling
 - Session Management - Stateful operations, worker affinity
 - Streaming Operations - Real-time progress, chunked data
 - Concurrent Processing - Parallel execution, pool management
 - Variable Management - Type system, constraints, validation
 - Binary Serialization - Performance benchmarks, large data handling
 - ML Workflows - Complete pipelines with custom adapters
 
mix run -e "SnakepitShowcase.Demos.BinaryDemo.run()"Shows:
- Automatic JSON vs binary detection
 - Side-by-side performance comparison
 - Real-world ML embedding examples
 - Memory efficiency metrics
 
See examples/snakepit_showcase/README.md for full documentation.
For detailed documentation on all Python bridge implementations (V1, V2, Enhanced, gRPC), see the Python Bridges section below.
Snakepit supports transparent cross-language function execution between Elixir and Python:
# Call Python functions from Elixir
{:ok, result} = ToolRegistry.execute_tool(session_id, "python_ml_function", %{data: input})
# Python can call Elixir functions transparently
# result = ctx.call_elixir_tool("parse_json", json_string='{"test": true}')For comprehensive documentation on the bidirectional tool bridge, see README_BIDIRECTIONAL_TOOL_BRIDGE.md.
# Configure with gRPC for dedicated streaming and advanced features
Application.put_env(:snakepit, :adapter_module, Snakepit.Adapters.GRPCPython)
Application.put_env(:snakepit, :grpc_config, %{base_port: 50051, port_range: 100})
# Dedicated streaming capabilities
{:ok, _} = Snakepit.execute_stream("batch_inference", %{
  batch_items: ["img1.jpg", "img2.jpg", "img3.jpg"]
}, fn chunk ->
  IO.puts("Processed: #{chunk["item"]} - #{chunk["confidence"]}")
end)- Native streaming - Progressive results and real-time updates
 - HTTP/2 multiplexing - Multiple concurrent requests per connection
 - Built-in health checks - Automatic worker health monitoring
 - Rich error handling - gRPC status codes with detailed context
 - Protocol buffers - Efficient binary serialization
 - Cancellable operations - Stop long-running tasks gracefully
 - Custom adapter support - Use third-party Python adapters via pool configuration
 
The gRPC adapter now supports custom Python adapters through pool configuration:
# Configure with a custom Python adapter (e.g., DSPy integration)
Application.put_env(:snakepit, :adapter_module, Snakepit.Adapters.GRPCPython)
Application.put_env(:snakepit, :pool_config, %{
  pool_size: 4,
  adapter_args: ["--adapter", "snakepit_bridge.adapters.dspy_grpc.DSPyGRPCHandler"]
})
# The adapter can provide custom commands beyond the standard set
{:ok, result} = Snakepit.Python.call("dspy.Predict", %{signature: "question -> answer"})
{:ok, result} = Snakepit.Python.call("stored.predictor.__call__", %{question: "What is DSPy?"})snakepit_bridge.adapters.dspy_grpc.DSPyGRPCHandler- DSPy integration for declarative language model programming- Supports DSPy modules (Predict, ChainOfThought, ReAct, etc.)
 - Python API with 
call,store,retrievecommands - Automatic signature parsing and field mapping
 - Session management for stateful operations
 
# Install gRPC dependencies
make install-grpc
# Generate protocol buffer code  
make proto-python
# Test with streaming demo
elixir examples/grpc_streaming_demo.exs
# Test with non-streaming demo
elixir examples/grpc_non_streaming_demo.exs# Configure
Application.put_env(:snakepit, :adapter_module, Snakepit.Adapters.GenericJavaScript)
# Additional commands
{:ok, _} = Snakepit.execute("random", %{type: "uniform", min: 0, max: 100})
{:ok, _} = Snakepit.execute("compute", %{operation: "sqrt", a: 16})The default ShowcaseAdapter provides a comprehensive set of tools demonstrating Snakepit capabilities:
| Tool | Description | Parameters | Example | 
|---|---|---|---|
ping | 
Health check / heartbeat | None | Snakepit.execute("ping", %{}) | 
echo | 
Echo back all arguments | Any key-value pairs | Snakepit.execute("echo", %{message: "hello"}) | 
add | 
Add two numbers | a (number), b (number) | 
Snakepit.execute("add", %{a: 5, b: 3}) | 
adapter_info | 
Get adapter capabilities | None | Snakepit.execute("adapter_info", %{}) | 
process_text | 
Text operations | text (string), operation (upper/lower/reverse/length) | 
Snakepit.execute("process_text", %{text: "hello", operation: "upper"}) | 
get_stats | 
System & adapter stats | None | Snakepit.execute("get_stats", %{}) | 
| Tool | Description | Parameters | Example | 
|---|---|---|---|
ml_analyze_text | 
ML-based text analysis | text (string) | 
Snakepit.execute("ml_analyze_text", %{text: "sample"}) | 
process_binary | 
Binary data processing | data (bytes), operation (checksum/etc) | 
Snakepit.execute("process_binary", %{data: binary, operation: "checksum"}) | 
| Tool | Description | Parameters | Example | 
|---|---|---|---|
stream_data | 
Stream data in chunks | count (int), delay (float) | 
Snakepit.execute_stream("stream_data", %{count: 5, delay: 1.0}, callback) | 
ping_stream | 
Streaming heartbeat | count (int) | 
Snakepit.execute_stream("ping_stream", %{count: 10}, callback) | 
| Tool | Description | Parameters | Example | 
|---|---|---|---|
concurrent_demo | 
Concurrent task execution | task_count (int) | 
Snakepit.execute("concurrent_demo", %{task_count: 3}) | 
call_elixir_demo | 
Call Elixir tools from Python | tool_name (string), tool params | 
Snakepit.execute("call_elixir_demo", %{tool_name: "parse_json", ...}) | 
# Basic operations
{:ok, %{"status" => "pong"}} = Snakepit.execute("ping", %{})
{:ok, %{"result" => 8}} = Snakepit.execute("add", %{a: 5, b: 3})
# Text processing
{:ok, %{"result" => "HELLO", "success" => true}} =
  Snakepit.execute("process_text", %{text: "hello", operation: "upper"})
# System stats
{:ok, stats} = Snakepit.execute("get_stats", %{})
# Returns: %{"adapter" => %{"name" => "ShowcaseAdapter", ...}, "system" => %{...}}
# Streaming
Snakepit.execute_stream("stream_data", %{count: 5, delay: 0.5}, fn chunk ->
  IO.puts("Received chunk: #{inspect(chunk)}")
end)For custom tools, see Creating Custom Adapters below.
Here's a real-world example of a data science adapter with session support:
# priv/python/data_science_adapter.py
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from snakepit_bridge.adapters.base import BaseAdapter
from snakepit_bridge.session_context import SessionContext
class DataScienceAdapter(BaseAdapter):
    def __init__(self):
        super().__init__()
        self.models = {}  # Store trained models per session
        
    def set_session_context(self, context: SessionContext):
        """Called when a session context is available."""
        self.session_context = context
        
    async def execute_load_data(self, args):
        """Load data from CSV and store in session."""
        file_path = args.get("file_path")
        if not file_path:
            raise ValueError("file_path is required")
            
        # Load data
        df = pd.read_csv(file_path)
        
        # Store basic info in session variables
        if self.session_context:
            await self.session_context.register_variable(
                "data_shape", "list", list(df.shape)
            )
            await self.session_context.register_variable(
                "columns", "list", df.columns.tolist()
            )
            
        return {
            "rows": len(df),
            "columns": len(df.columns),
            "column_names": df.columns.tolist(),
            "dtypes": df.dtypes.to_dict()
        }
        
    async def execute_preprocess(self, args):
        """Preprocess data with scaling."""
        data = args.get("data")
        target_column = args.get("target")
        
        # Convert to DataFrame
        df = pd.DataFrame(data)
        
        # Separate features and target
        X = df.drop(columns=[target_column])
        y = df[target_column]
        
        # Scale features
        scaler = StandardScaler()
        X_scaled = scaler.fit_transform(X)
        
        # Store scaler parameters in session
        if self.session_context:
            session_id = self.session_context.session_id
            self.models[f"{session_id}_scaler"] = scaler
            
        # Split data
        X_train, X_test, y_train, y_test = train_test_split(
            X_scaled, y, test_size=0.2, random_state=42
        )
        
        return {
            "train_size": len(X_train),
            "test_size": len(X_test),
            "feature_means": scaler.mean_.tolist(),
            "feature_stds": scaler.scale_.tolist()
        }
        
    async def execute_train_model(self, args):
        """Train a model and store it."""
        model_type = args.get("model_type", "linear_regression")
        hyperparams = args.get("hyperparams", {})
        
        # Import the appropriate model
        if model_type == "linear_regression":
            from sklearn.linear_model import LinearRegression
            model = LinearRegression(**hyperparams)
        elif model_type == "random_forest":
            from sklearn.ensemble import RandomForestRegressor
            model = RandomForestRegressor(**hyperparams)
        else:
            raise ValueError(f"Unknown model type: {model_type}")
            
        # Train model (assume data is passed or stored)
        # ... training logic ...
        
        # Store model in session
        if self.session_context:
            session_id = self.session_context.session_id
            model_id = f"{session_id}_{model_type}"
            self.models[model_id] = model
            
            # Store model metadata as variables
            await self.session_context.register_variable(
                "current_model", "string", model_id
            )
            
        return {
            "model_id": model_id,
            "model_type": model_type,
            "training_complete": True
        }
# Usage in grpc_server.py or your bridge
adapter = DataScienceAdapter()For simpler use cases without session management:
# my_simple_adapter.py
from snakepit_bridge import BaseCommandHandler, ProtocolHandler
from snakepit_bridge.core import setup_graceful_shutdown, setup_broken_pipe_suppression
class MySimpleHandler(BaseCommandHandler):
    def _register_commands(self):
        self.register_command("uppercase", self.handle_uppercase)
        self.register_command("word_count", self.handle_word_count)
    
    def handle_uppercase(self, args):
        text = args.get("text", "")
        return {"result": text.upper()}
    
    def handle_word_count(self, args):
        text = args.get("text", "")
        words = text.split()
        return {
            "word_count": len(words),
            "char_count": len(text),
            "unique_words": len(set(words))
        }
def main():
    setup_broken_pipe_suppression()
    
    command_handler = MySimpleHandler()
    protocol_handler = ProtocolHandler(command_handler)
    setup_graceful_shutdown(protocol_handler)
    
    protocol_handler.run()
if __name__ == "__main__":
    main()- No sys.path manipulation - proper package imports
 - Location independent - works from any directory
 - Production ready - can be packaged and installed
 - Enhanced error handling - robust shutdown and signal management
 - Type checking - full IDE support with proper imports
 
defmodule MyApp.RubyAdapter do
  @behaviour Snakepit.Adapter
  
  @impl true
  def executable_path do
    System.find_executable("ruby")
  end
  
  @impl true
  def script_path do
    Path.join(:code.priv_dir(:my_app), "ruby/bridge.rb")
  end
  
  @impl true
  def script_args do
    ["--mode", "pool-worker"]
  end
  
  @impl true
  def supported_commands do
    ["ping", "process_data", "generate_report"]
  end
  
  @impl true
  def validate_command("process_data", args) do
    if Map.has_key?(args, :data) do
      :ok
    else
      {:error, "Missing required field: data"}
    end
  end
  
  def validate_command("ping", _args), do: :ok
  def validate_command(cmd, _args), do: {:error, "Unsupported command: #{cmd}"}
  
  # Optional callbacks
  @impl true
  def prepare_args("process_data", args) do
    # Transform args before sending
    Map.update(args, :data, "", &String.trim/1)
  end
  
  @impl true
  def process_response("generate_report", %{"report" => report} = response) do
    # Post-process the response
    {:ok, Map.put(response, "processed_at", DateTime.utc_now())}
  end
  
  @impl true
  def command_timeout("generate_report", _args), do: 120_000  # 2 minutes
  def command_timeout(_command, _args), do: 30_000  # Default 30 seconds
end#!/usr/bin/env ruby
# priv/ruby/bridge.rb
require 'grpc'
require_relative 'snakepit_services_pb'
class BridgeHandler
  def initialize
    @commands = {
      'ping' => method(:handle_ping),
      'process_data' => method(:handle_process_data),
      'generate_report' => method(:handle_generate_report)
    }
  end
  
  def run
    STDERR.puts "Ruby bridge started"
    
    loop do
      # gRPC server handles request/response automatically
    end
  end
  
  private
  
  def process_command(request)
    command = request['command']
    args = request['args'] || {}
    
    handler = @commands[command]
    if handler
      result = handler.call(args)
      {
        'id' => request['id'],
        'success' => true,
        'result' => result,
        'timestamp' => Time.now.iso8601
      }
    else
      {
        'id' => request['id'],
        'success' => false,
        'error' => "Unknown command: #{command}",
        'timestamp' => Time.now.iso8601
      }
    end
  rescue => e
    {
      'id' => request['id'],
      'success' => false,
      'error' => e.message,
      'timestamp' => Time.now.iso8601
    }
  end
  
  def handle_ping(args)
    { 'status' => 'ok', 'message' => 'pong' }
  end
  
  def handle_process_data(args)
    data = args['data'] || ''
    { 'processed' => data.upcase, 'length' => data.length }
  end
  
  def handle_generate_report(args)
    # Simulate report generation
    sleep(1)
    { 
      'report' => {
        'title' => args['title'] || 'Report',
        'generated_at' => Time.now.iso8601,
        'data' => args['data'] || {}
      }
    }
  end
end
# Handle signals gracefully
Signal.trap('TERM') { exit(0) }
Signal.trap('INT') { exit(0) }
# Run the bridge
BridgeHandler.new.runalias Snakepit.Bridge.SessionStore
# Create a session
{:ok, session} = SessionStore.create_session("session_123", ttl: 7200)
# Store data in session
:ok = SessionStore.store_program("session_123", "prog_1", %{
  model: "gpt-4",
  temperature: 0.8
})
# Retrieve session data
{:ok, session} = SessionStore.get_session("session_123")
{:ok, program} = SessionStore.get_program("session_123", "prog_1")
# Update session
{:ok, updated} = SessionStore.update_session("session_123", fn session ->
  Map.put(session, :last_activity, DateTime.utc_now())
end)
# Check if session exists
true = SessionStore.session_exists?("session_123")
# List all sessions
session_ids = SessionStore.list_sessions()
# Manual cleanup
SessionStore.delete_session("session_123")
# Get session statistics
stats = SessionStore.get_stats()- Configure quotas via 
:snakepit, :session_store(max_sessions,max_programs_per_session,max_global_programs); defaults guard against unbounded growth while allowing:infinityoverrides for trusted deployments. - Attempting to exceed a quota returns tagged errors such as 
{:error, :session_quota_exceeded}or{:error, {:program_quota_exceeded, session_id}}so callers can surface actionable messages. - Session state lives in 
:protectedETS tables owned by the SessionStore processβaccess it via the public API rather than touching ETS directly. - Regression coverage lives in 
test/unit/bridge/session_store_test.exs, which exercises per-session quotas, global quotas, and reuse of existing program slots. 
# Store programs accessible by any worker
:ok = SessionStore.store_global_program("template_1", %{
  type: "qa_template",
  prompt: "Answer the following question: {question}"
})
# Retrieve from any worker
{:ok, template} = SessionStore.get_global_program("template_1")Snakepit provides a comprehensive distributed telemetry system that enables full observability across your Elixir cluster and Python workers. All events flow through Elixir's standard :telemetry library.
π See TELEMETRY.md for complete documentation.
# Monitor Python tool execution
:telemetry.attach(
  "my-app-monitor",
  [:snakepit, :python, :call, :stop],
  fn _event, %{duration: duration}, metadata, _ ->
    duration_ms = duration / 1_000_000
    Logger.info("Python call completed",
      command: metadata.command,
      duration_ms: duration_ms,
      worker_id: metadata.worker_id
    )
  end,
  nil
)Infrastructure Events:
[:snakepit, :pool, :worker, :spawned]- Worker ready and connected[:snakepit, :pool, :worker, :terminated]- Worker terminated[:snakepit, :pool, :status]- Periodic pool status[:snakepit, :session, :created|destroyed]- Session lifecycle
Python Execution Events (folded from Python):
[:snakepit, :python, :call, :start|stop|exception]- Command execution[:snakepit, :python, :tool, :execution, :*]- Tool execution[:snakepit, :python, :memory, :sampled]- Resource metrics
gRPC Bridge Events:
[:snakepit, :grpc, :call, :start|stop|exception]- gRPC calls[:snakepit, :grpc, :stream, :*]- Streaming operations[:snakepit, :grpc, :connection, :*]- Connection health
from snakepit_bridge import telemetry
# Automatic timing with span
with telemetry.span("tool.execution", {"tool": "my_tool"}):
    result = expensive_operation()
# Custom metrics
telemetry.emit("tool.result_size", {"bytes": len(result)})Works seamlessly with:
- Prometheus - 
telemetry_metrics_prometheus - StatsD - 
telemetry_metrics_statsd - OpenTelemetry - 
opentelemetry_telemetry - Custom handlers - Your own GenServer aggregators
 
stats = Snakepit.get_stats()
# Returns:
# %{
#   workers: 8,          # Total workers
#   available: 6,        # Available workers
#   busy: 2,            # Busy workers
#   requests: 1534,     # Total requests
#   queued: 0,          # Currently queued
#   errors: 12,         # Total errors
#   queue_timeouts: 3,  # Queue timeout count
#   pool_saturated: 0   # Saturation rejections
# }βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β                    Snakepit Application               β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β                                                       β
β  βββββββββββββββ  ββββββββββββββββ  βββββββββββββββββ β
β  β    Pool     β  β SessionStore β  βProcessRegistryβ β
β  β  Manager    β  β   (ETS)      β  β (ETS + DETS) β β
β  ββββββββ¬βββββββ  ββββββββββββββββ  βββββββββββββββββ β
β         β                                             β
β  ββββββββΌββββββββββββββββββββββββββββββββββββββββββββββ
β  β            WorkerSupervisor (Dynamic)             ββ
β  ββββββββ¬ββββββββββββββββββββββββββββββββββββββββββββββ
β         β                                             β
β  ββββββββΌβββββββ  ββββββββββββββββ  ββββββββββββββββ  β
β  β   Worker    β  β   Worker     β  β   Worker     β  β
β  β  Starter    β  β  Starter     β  β  Starter     β  β
β  β(Supervisor) β  β(Supervisor)  β  β(Supervisor)  β  β
β  ββββββββ¬βββββββ  βββββββββ¬βββββββ  βββββββββ¬βββββββ  β
β         β                 β                 β         β
β  ββββββββΌβββββββ  βββββββββΌβββββββ  βββββββββΌβββββββ  β
β  β   Worker    β  β   Worker     β  β   Worker     β  β
β  β (GenServer) β  β (GenServer)  β  β (GenServer)  β  β
β  ββββββββ¬βββββββ  βββββββββ¬βββββββ  βββββββββ¬βββββββ  β
β         β                 β                 β         β
βββββββββββΌββββββββββββββββββΌββββββββββββββββββΌββββββββββ
          β                 β                 β
    βββββββΌβββββββ    βββββββΌβββββββ    βββββββΌβββββββ
    β  External  β    β  External  β    β  External  β
    β  Process   β    β  Process   β    β  Process   β
    β  (Python)  β    β  (Node.js) β    β   (Ruby)   β
    ββββββββββββββ    ββββββββββββββ    ββββββββββββββ
- Concurrent Initialization: Workers start in parallel using 
Task.async_stream - Permanent Wrapper Pattern: Worker.Starter supervises Workers for auto-restart
 - Centralized State: All session data in ETS, workers are stateless
 - Registry-Based: O(1) worker lookups and reverse PID lookups
 - gRPC Communication: HTTP/2 protocol with streaming support
 - Persistent Process Tracking: ProcessRegistry uses DETS for crash-resistant tracking
 
- 
Startup:
- Pool manager starts
 - Concurrently spawns N workers via WorkerSupervisor
 - Each worker starts its external process
 - Workers send init ping and register when ready
 
 - 
Request Flow:
- Client calls 
Snakepit.execute/3 - Pool finds available worker (with session affinity if applicable)
 - Worker sends request to external process
 - External process responds
 - Worker returns result to client
 
 - Client calls 
 - 
Crash Recovery:
- Worker crashes β Worker.Starter restarts it automatically
 - External process dies β Worker detects and crashes β restart
 - Pool crashes β Supervisor restarts entire pool
 - BEAM crashes β ProcessRegistry cleans orphans on next startup
 
 - 
Shutdown:
- Pool manager sends shutdown to all workers
 - Workers close ports gracefully (SIGTERM)
 - ApplicationCleanup ensures no orphaned processes (SIGKILL)
 
 
Configuration: 16 workers, gRPC Python adapter
Hardware: 8-core CPU, 32GB RAM
gRPC Performance:
Startup Time:
- Sequential: 16 seconds (1s per worker)
- Concurrent: 1.2 seconds (13x faster)
Throughput (gRPC Non-Streaming):
- Simple computation: 75,000 req/s
- ML inference: 12,000 req/s
- Session operations: 68,000 req/s
Latency (p99, gRPC):
- Simple computation: < 1.2ms
- ML inference: < 8ms
- Session operations: < 0.6ms
Streaming Performance:
- Throughput: 250,000 chunks/s
- Memory usage: Constant (streaming)
- First chunk latency: < 5ms
Connection overhead:
- Initial connection: 15ms
- Reconnection: 8ms
- Health check: < 1ms
- Pool Size: Start with 
System.schedulers_online() * 2 - Queue Size: Monitor 
pool_saturatederrors and adjust - Timeouts: Set appropriate timeouts per command type
 - Session TTL: Balance memory usage vs cache hits
 - Health Checks: Increase interval for stable workloads
 
Snakepit v0.3+ includes automatic binary serialization for large data transfers, providing significant performance improvements for ML/AI workloads that involve tensors, embeddings, and other numerical arrays.
- Automatic Detection: When variable data exceeds 10KB, Snakepit automatically switches from JSON to binary encoding
 - Type Support: Currently optimized for 
tensorandembeddingvariable types - Zero Configuration: No code changes required - it just works
 - Protocol: Uses Erlang's native binary format (ETF) on Elixir side and Python's pickle on Python side
 
# Example: 1000x1000 tensor (8MB of float data)
# JSON encoding: ~500ms
# Binary encoding: ~50ms (10x faster!)
# Create a large tensor
{:ok, _} = Snakepit.execute_in_session("ml_session", "create_tensor", %{
  shape: [1000, 1000],
  fill_value: 0.5
})
# The tensor is automatically stored using binary serialization
# Retrieval is also optimized
{:ok, tensor} = Snakepit.execute_in_session("ml_session", "get_variable", %{
  name: "large_tensor"
})The 10KB threshold (10,240 bytes) is optimized for typical workloads:
- Below 10KB: JSON encoding (better for debugging, human-readable)
 - Above 10KB: Binary encoding (better for performance)
 
# In your Python adapter
from snakepit_bridge import SessionContext
class MLAdapter:
    def process_embeddings(self, ctx: SessionContext, batch_size: int):
        # Generate large embeddings (e.g., 512-dimensional)
        embeddings = np.random.randn(batch_size, 512).tolist()
        
        # This automatically uses binary serialization if > 10KB
        ctx.register_variable("batch_embeddings", "embedding", embeddings)
        
        # Retrieval also handles binary data transparently
        stored = ctx["batch_embeddings"]
        return {"shape": [len(stored), len(stored[0])]}- 
Tensor Type:
- Metadata (JSON): 
{"shape": [dims...], "dtype": "float32", "binary_format": "pickle/erlang_binary"} - Binary data: Serialized flat array of values
 
 - Metadata (JSON): 
 - 
Embedding Type:
- Metadata (JSON): 
{"shape": [length], "dtype": "float32", "binary_format": "pickle/erlang_binary"} - Binary data: Serialized array of float values
 
 - Metadata (JSON): 
 
The following fields support binary data:
Variable.binary_value: Stores large variable dataSetVariableRequest.binary_value: Sets variable with binary dataRegisterVariableRequest.initial_binary_value: Initial binary valueBatchSetVariablesRequest.binary_updates: Batch binary updatesExecuteToolRequest.binary_parameters: Binary tool parameters
- Variable Types: Always use proper types (
tensor,embedding) for large numerical data - Batch Operations: Use batch updates for multiple large variables to minimize overhead
 - Memory Management: Binary data is held in memory - monitor usage for very large datasets
 - Compatibility: Binary format is internal - use standard types when sharing data externally
 
- Type Support: Currently only 
tensorandembeddingtypes use binary serialization - Format Lock-in: Binary data uses platform-specific formats (ETF/pickle)
 - Debugging: Binary data is not human-readable in logs/inspection
 
# Check for orphaned processes
ps aux | grep grpc_server.py
# Verify ProcessRegistry is cleaning up
Snakepit.Pool.ProcessRegistry.get_stats()
# Check DETS file location
ls -la priv/data/process_registry.dets
# See detailed documentation
# README_PROCESS_MANAGEMENT.md# Check adapter configuration
adapter = Application.get_env(:snakepit, :adapter_module)
adapter.executable_path()  # Should return valid path
File.exists?(adapter.script_path())  # Should return true
# Check logs for errors
Logger.configure(level: :debug)# Enable port tracing
:erlang.trace(Process.whereis(Snakepit.Pool.Worker), true, [:receive, :send])
# Check external process logs
# Python: Add logging to bridge script
# Node.js: Check stderr output# Monitor ETS usage
:ets.info(:snakepit_sessions, :memory)
# Check for orphaned processes
Snakepit.Pool.ProcessRegistry.get_stats()
# Force cleanup
Snakepit.Bridge.SessionStore.cleanup_expired_sessions()# Enable debug logging
Logger.configure(level: :debug)
# Trace specific worker
:sys.trace(Snakepit.Pool.Registry.via_tuple("worker_1"), true)
# Get internal state
:sys.get_state(Snakepit.Pool)- Telemetry & Observability - Comprehensive telemetry system guide
 - Testing Guide - How to run and write tests
 - Unified gRPC Bridge - Stage 0, 1, and 2 implementation details
 - Bidirectional Tool Bridge - Cross-language function execution between Elixir and Python
 - Process Management - Persistent tracking and orphan cleanup
 - gRPC Communication - Streaming and non-streaming gRPC details
 - Python Bridge Implementations - See sections above for V1, V2, Enhanced, and gRPC bridges
 
We welcome contributions! Please see our Contributing Guide for details.
# Clone the repo
git clone https://github.com/nshkrdotcom/snakepit.git
cd snakepit
# Install dependencies
mix deps.get
# Run tests
mix test
# Run example scripts
elixir examples/v2/session_based_demo.exs
elixir examples/javascript_grpc_demo.exs
# Check code quality
mix format --check-formatted
mix dialyzer# All tests
mix test
# With coverage
mix test --cover
# Specific test
mix test test/snakepit_test.exs:42Snakepit is released under the MIT License. See the LICENSE file for details.
- Inspired by the need for reliable ML/AI integrations in Elixir
 - Built on battle-tested OTP principles
 - Special thanks to the Elixir community
 
v0.5.1 (Current Release)
- Worker pool scaling fixed - Reliably scales to 250+ workers (previously ~105 limit)
 - Thread explosion resolved - Fixed fork bomb from Python scientific libraries
 - Dynamic port allocation - OS-assigned ports eliminate collision races
 - Batched startup - Configurable batching prevents resource exhaustion
 - New diagnostic tools - Added 
mix diagnose.scalingfor bottleneck analysis - Enhanced configuration - Thread limiting and resource management improvements
 
v0.5.0
- DSPy integration removed - Clean architecture separation achieved
 - Test infrastructure enhanced - 89% increase in test coverage (27β51 tests)
 - Code cleanup complete - Significant dead code removed
 - Python SessionContext streamlined - Simplified implementation
 - Supertester foundation - Phase 1 complete with deterministic testing
 - gRPC streaming bridge - Full implementation with HTTP/2 multiplexing
 - Comprehensive documentation - All features well-documented
 
Roadmap
- Complete Supertester conformance (Phases 2-4)
 - Enhanced streaming operations and cancellation
 - Additional language adapters (Ruby, R, Go)
 - Advanced telemetry and monitoring features
 - Distributed worker pools
 
- Hex Package
 - API Documentation
 - GitHub Repository
 - Example Projects
 - Telemetry & Observability Guide
 - gRPC Bridge Documentation
 - Python Bridge Documentation - See sections above
 
Made with β€οΈ by NSHkr