Seungjun Oh, Younggeun Lee, Hyejin Jeon, Eunbyung Park
[Paper] [Project Page]
3D-4D Gaussian Splatting introduces a hybrid representation that combines 3D and 4D Gaussians to model dynamic scenes efficiently — reducing memory, improving speed, and preserving quality.
- Efficient hybrid representation (3D for static, 4D for dynamic)
- Faster training than 4DGS with similar or better quality
- Drop-in replacement for existing 4DGS pipelines
git clone https://github.com/ohsngjun/3D-4DGS.git
cd 3D-4DGS
conda env create --file environment.yml
conda activate 3d4dgsDownload the dataset here. After downloading the data, preprocess it using:
python scripts/n3v2blender.py $path_to_datasetSingle sequence training:
python main.py --config configs/n3v/default.yaml --model_path <model save path> --source_path <dataset path>Train all sequences:
bash train.shDon't forget to adjust dataset paths in train.sh.
python main.py --config configs/n3v/default.yaml --model_path <model path> --source_path <dataset path> --start_checkpoint <model_path>/chkpnt6000.pth --valThis project builds upon:
- Real-time 4D Gaussian Splatting
- Ex4DGS
- 4D-Rotor Gaussians (data preprocessing)
- @sorceressyidi (visualization code)
@article{oh2025hybrid,
title={Hybrid 3D-4D Gaussian Splatting for Fast Dynamic Scene Representation},
author={Oh, Seungjun and Lee, Younggeun and Jeon, Hyejin and Park, Eunbyung},
journal={arXiv preprint arXiv:2505.13215},
year={2025}
}