Thanks to visit codestin.com
Credit goes to github.com

Skip to content

avb24025/RAG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

5 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🧠 RAG Document Assistant

A Retrieval-Augmented Generation (RAG) system that allows querying documents intelligently using LangChain, Google Gemini API, and Pinecone Vector Database.


πŸš€ Tech Stack

  • Backend: Node.js

  • AI Model: Google Gemini (@google/generative-ai)

  • Vector Database: Pinecone

  • Framework: LangChain.js

  • File Parsing: pdf-parse

  • Embedding Store: LangChain’s PineconeStore


πŸ”‘ Environment Variables

Create .env:

GEMINI_API_KEY=your_gemini_api_key
PINECONE_API_KEY=your_pinecone_api_key
PINECONE_INDEX_NAME=your_index_name
PINECONE_ENVIRONMENT=your_pinecone_environment

πŸ“ Project Structure

RAG/
β”œβ”€β”€ Prepare.js          # Creates embeddings from documents & stores them in Pinecone
β”œβ”€β”€ chat.js             # Handles user queries using Gemini + vector retrieval
β”œβ”€β”€ node_modules/       # Node.js dependencies
β”œβ”€β”€ package.json        # Project metadata & dependencies
β”œβ”€β”€ .env                # API keys & environment variables
└── README.md           # Project documentation

About

RAG using langchain

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published