Thanks to visit codestin.com
Credit goes to github.com

Skip to content

visualise amplicon genome coverage by bokeh using mosdepth output

Notifications You must be signed in to change notification settings

abcdtree/amp-depth-viz

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

amp-depth-viz

visualise amplicon genome coverage by bokeh using mosdepth output

install

    conda create -n amp-depth-viz -c conda-forge -c bioconda -c nanoporetech fastcat python=3.14
    conda activate amp-depth-viz
    pip install amp-depth-viz

Instruction

    #running fastcat and provide a samplesheet
    #fastq_pass is the fastq_pass folder from the sars ONT run
    #samplesheet requests at least two columns: sampleID,barcode
    #It helps to filter the barcode and relate to right sampleID
    amp-depth-viz sample/sample_input.bed --fastq_pass Data/sars/fastq_pass --samplesheet samplesheet.csv --output test.html

    #if you already ran fastcat and have the per reads summary file, you can do 
    amp-depth-viz sample/sample_input.bed --fastcat_perreads Data/per-reads-summary.tsv --samplesheet samplesheet.csv --output test.html

Using import inner functions

    #import functions inside amp-depth-viz package
    from amp_depth_viz.main import *

    #load template from the package files -- add in 0.1.5
    template = load_template()

    #create plots
    fig_len, fig_qual, fig_cnt = plot_summary_plotly(file_path_to_fastcat_per_read_file)
    coverage_plot_plotly = plot_coverage_plotly(
            coverage_bed_file_from_mosdepth,
            threshold=20,
            xlim=30000,
            ylim=800,
            ncols=3,
            colors=Colors(),
        )
      
    #combine the plots and create html
    plotly_plot_combine([fig_len, fig_qual, fig_cnt, coverage_plot_plotly], template=template, output_path=output_path_to_save_html)

Usage

    usage: amp-depth-viz [-h] [--fastcat_perreads FASTCAT_PERREADS | --fastq_pass FASTQ_PASS] [--template TEMPLATE]
                     [--samplesheet SAMPLESHEET] [--output OUTPUT] [--xlim XLIM] [--ylim YLIM] [--threshold THRESHOLD]
                     [--threads THREADS] [--ncols NCOLS]
                     coveragebed

create wf-artic like amplicon coverage plots using bokeh

positional arguments:
  coveragebed           a full sample bed files contains all genome depth information from mosdepth

options:
  -h, --help            show this help message and exit
  --fastcat_perreads FASTCAT_PERREADS
                        per-read-stats.tsv output from fastcat
  --fastq_pass FASTQ_PASS
                        the fastq_folder from a sars cov run
  --template TEMPLATE   jinja2 template to render -- default in template/template.html
  --samplesheet SAMPLESHEET
                        An optional samplesheet to rename the barcode, at least two columns required: sampleID, barcode
  --output OUTPUT       html output file
  --xlim XLIM           max of the genome position
  --ylim YLIM           the expected max depth
  --threshold THRESHOLD
                        depth threshold for passing QC , default as 20
  --threads THREADS     max number of cpus to use for fastcat analysis
  --ncols NCOLS         number of columns to grid the plots in the html pages, default as 3
  --plot_package, -p {bokeh,plotly}
                        Choose a python plot package to make the plots,from the allowed options: bokeh, plotly

About

visualise amplicon genome coverage by bokeh using mosdepth output

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •