Now powered by Google Vertex AI with Gemini 2.5 Pro & Flash models!
An advanced AI-driven platform that automates the entire journey from idea discovery to multi-project management. Built for Google Cloud with scalable SaaS architecture in mind.
The IdeaGen App is a comprehensive automation platform that:
- Generates business ideas using Google's Gemini 2.5 Pro model
- Validates ideas through AI-powered multi-criteria analysis
- Selects viable projects automatically based on scoring
- Builds websites and launches social campaigns
- Tracks performance and scales successful projects
- Manages multiple projects simultaneously with AI insights
- Gemini 2.5 Pro: High-performance model for complex idea generation and validation
- Gemini 2.5 Flash-Nano-Banana: Ultra-fast model for quick content generation and analysis
- Idea Generation: Gemini 2.5 Pro (comprehensive analysis)
- Idea Validation: Gemini 2.5 Pro (detailed scoring)
- Content Creation: Gemini 2.5 Flash-Nano-Banana (fast generation)
- Quick Analysis: Gemini 2.5 Flash-Nano-Banana (real-time insights)
ideaGen-app/
├── integrations/ # Google Cloud integrations
│ └── vertex-ai-client.js # Vertex AI client
├── workflows/ # n8n workflow definitions
│ ├── 01-idea-generation/
│ ├── 02-validation/
│ ├── 03-selection/
│ └── ...
├── deploy/ # Google Cloud deployment
│ └── google-cloud-deploy.sh
├── config/ # Configuration files
│ ├── environment.json
│ └── google-cloud-deployment.json
├── database/ # PostgreSQL schema
├── server.js # Main application server
├── Dockerfile # Container deployment
└── package.json # Dependencies
- Google Cloud Project with billing enabled
- Google Cloud SDK installed and configured
- Docker installed locally
- Node.js 18+
# 1. Clone and setup
git clone <repository>
cd ideaGen-app
# 2. Set environment variables
export GOOGLE_CLOUD_PROJECT_ID=your-project-id
export GOOGLE_CLOUD_LOCATION=us-central1
export GOOGLE_APPLICATION_CREDENTIALS=path/to/service-account.json
# 3. Run deployment script
./deploy/google-cloud-deploy.sh# 1. Enable required APIs
gcloud services enable run.googleapis.com sql-component.googleapis.com aiplatform.googleapis.com
# 2. Build and deploy
gcloud builds submit --tag gcr.io/PROJECT_ID/idea-gen
gcloud run deploy idea-gen --image gcr.io/PROJECT_ID/idea-gen --platform managed
# 3. Configure secrets
gcloud secrets create idea-gen-db-password --replication-policy="automatic"Create .env file:
# Google Cloud Configuration
GOOGLE_CLOUD_PROJECT_ID=your-project-id
GOOGLE_CLOUD_LOCATION=us-central1
GOOGLE_SERVICE_ACCOUNT_EMAIL=service-account@project.iam.gserviceaccount.com
GOOGLE_PRIVATE_KEY="-----BEGIN PRIVATE KEY-----\n..."
GOOGLE_APPLICATION_CREDENTIALS=path/to/credentials.json
# Database (for local development)
POSTGRES_HOST=localhost
POSTGRES_PORT=5432
POSTGRES_DB=idea_engine
POSTGRES_USER=postgres
POSTGRES_PASSWORD=your_password
# API Keys
PRODUCTHUNT_API_KEY=...
SERP_API_KEY=...
GITHUB_TOKEN=...
NETLIFY_TOKEN=...# Install dependencies
npm install
# Start locally
npm run dev
# Test Vertex AI integration
npm run local:test
# Deploy to Google Cloud
npm run deployPOST /api/ideas/generate- Generate ideas using Gemini 2.5 ProPOST /api/ideas/validate- Validate ideas with AI analysisPOST /api/content/generate- Generate content with Flash modelPOST /api/analysis/quick- Quick text analysisPOST /api/test/vertex-ai- Test Vertex AI connection
// Generate business ideas
const response = await fetch('/api/ideas/generate', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
sources: ['trends', 'reddit', 'producthunt'],
count: 10,
trends: [
{ title: 'AI Automation', description: 'Growing trend in AI tools' }
]
})
});
// Validate an idea
const validation = await fetch('/api/ideas/validate', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
idea: {
title: 'AI-Powered Customer Service',
description: 'Automated customer support platform'
}
})
});- AI Model: Gemini 2.5 Pro
- Features:
- Fetches trends from Reddit, Product Hunt, Google Trends
- Generates 10-20 high-quality business ideas using AI
- Stores ideas with AI-generated metadata
- Intelligent categorization and tagging
- AI Model: Gemini 2.5 Pro
- Validation Metrics:
- Market demand analysis (AI-powered)
- Competition assessment with AI insights
- Technical feasibility scoring
- Revenue potential calculation
- Time to market estimation
- Output: Comprehensive validation report (0-100 score)
- Auto-progression: Ideas scoring 70+ proceed automatically
- Selection System with AI recommendations
- Project Initializer with AI-generated documentation
- Website Builder with AI copywriting
- Social Automation with AI content generation
- Analytics Dashboard with AI insights
- Multi-Project Orchestrator with AI optimization
- AI-Powered: Google's most advanced Gemini models
- Cloud-Native: Built for Google Cloud scalability
- Secure: Secret Manager integration
- Scalable: Cloud Run with auto-scaling
- Reliable: Built-in retry logic and error handling
- Data-Driven: PostgreSQL with intelligent indexing
- Integration Ready: Supports Elastic + Fivetran challenges
- AI-powered search: Find ideas using semantic search
- Real-time analytics: Track idea performance metrics
- Advanced filtering: Filter by AI-generated scores and tags
- Multi-source connectors: Reddit, Product Hunt, Google Trends APIs
- Automated pipelines: Continuous data ingestion
- AI-enhanced transformation: Intelligent data processing
- Vertex AI: State-of-the-art AI models
- Cloud Run: Serverless deployment
- Cloud SQL: Managed database
- Secret Manager: Secure credential storage
- Idea Generation: ~3 seconds per 10 ideas (Gemini 2.5 Pro)
- Validation: ~2 seconds per idea (Gemini 2.5 Pro)
- Content Generation: ~1 second (Flash-Nano-Banana)
- Quick Analysis: ~500ms (Flash-Nano-Banana)
- Scalability: Handles 100+ concurrent requests
- Backend: Node.js, Express
- AI: Google Vertex AI (Gemini 2.5 Pro & Flash)
- Database: PostgreSQL on Cloud SQL
- Deployment: Google Cloud Run
- Secrets: Google Secret Manager
- Monitoring: Cloud Logging & Monitoring
- Automation: n8n workflows
- API Docs:
/api/docsendpoint - Architecture:
config/google-cloud-deployment.json - Database Schema:
database/schema.sql - Deployment Guide:
deploy/google-cloud-deploy.sh
This project provides a foundation for:
- AI integration with Google Vertex AI
- Google Cloud deployment
- API-first architecture
- Elastic search integration opportunity
- Fivetran connector development opportunity
MIT License - Open source implementation
Built with Google Cloud, Vertex AI, and cutting-edge AI technology
Optimized for Google Cloud x Elastic x Fivetran integration challenges.