Thanks to visit codestin.com
Credit goes to github.com

Skip to content

afondiel/edge-vision

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Edge Vision 👁️ | A Practical Guide

A practical guide for real-world and efficient computer vision applications for resource-constrained devices with industry standards in mind.

New to Edge AI?

Table of Contents

Introduction

The goal of this guide is to provide resources for building, optimizing, and deploying Computer Vision applications at the edge, through hands-on examples including practical notebooks and real-world use cases across key industries.

Key Concepts

Industry Blueprints

  • Autonomous Systems
  • Healthcare & Medical Imaging*
  • Retail & Consumer Analytics
  • Security & Surveillance
  • Agriculture & Precision Farming
  • Manufacturing & Quality Control
  • Smart Cities & Urban Planning

Edge Optimization Lab: techniques and tools for maximizing performance and efficiency of vision models on edge hardware

  • Model Quantization
  • Pruning Techniques
  • Federated Learning
  • Compiler Targets
  • Hardware-Specific Optimization

Production Pipelines: guides and templates for robust, scalable edge vision AI operations

  • CI/CD for Edge
  • Monitoring (Drift Detection, Edge Metrics Dashboard)
  • OTA Updates
  • Edge Security (Secure Boot, Data Encryption, Threat Detection, Privacy-Preserving vision, Adversarial Robustness, Device Hardening, Compliance)

Reference Architectures: blueprints for edge vision hardware and system design

  • Microphone Array Setups
  • Edge Server Specs
  • IoT Connectivity
  • Edge-Cloud Hybrid Models

Integration

  • Notebooks (hands-on deep dives)
  • Companion Resources
  • Industry-Specific Stardards

Project Structure

├── edge-ai-engineering/
│   ├── introduction-to-edge-ai.md
│   ├── edge-ai-architectures.md
│   ├── model-optimization-techniques.md
│   ├── hardware-acceleration.md
│   ├── edge-deployment-strategies.md
│   ├── real-time-processing.md
│   ├── privacy-and-security.md
│   ├── edge-ai-frameworks.md
│   └── benchmarking-and-performance.md    
├── industry-blueprints/
│   ├── autonomous-systems/
│   │   ├── traffic-analysis-yolov8-tensorrt.md     
│   │   ├── drone-navigation-lite.md
│   │   ├── pedestrian-tracking-edgetpu.md
│   │   └── vehicle-defect-detection-openvino.md
│   ├── healthcare-medical-imaging/
│   │   ├── xray-classification-tflite.md            
│   │   ├── ultrasound-segmentation-ncnn.md
│   │   ├── mri-tumor-detection-onnx.md
│   │   └── remote-patient-monitoring-jetson.md
│   ├── retail-consumer-analytics/
│   │   ├── shelf-analytics-mmdetection.md
│   │   ├── checkout-automation.md
│   │   ├── customer-behavior-analysis-openvino.md
│   │   └── inventory-management-edge-tflite.md
│   ├── security-surveillance/
│   │   ├── perimeter-surveillance-yolo.md
│   │   ├── anomaly-detection-autoencoder.md
│   │   ├── facial-recognition-privacy-preserving.md
│   │   └── crowd-behavior-analysis-edge.md
│   ├── agriculture-precision-farming/
│   │   ├── crop-health-monitoring-multispectral.md
│   │   ├── yield-prediction-edge-ml.md
│   │   └── autonomous-harvesting-robotics.md
│   ├── manufacturing-quality-control/
│   │   ├── defect-detection-openvino.md             
│   │   ├── robotic-picking-ort.md
│   │   └── predictive-maintenance-edge-analytics.md
│   └── smart-cities-urban-planning/
│       ├── traffic-flow-optimization-edge.md
│       ├── waste-management-vision-ai.md
│       └── energy-grid-monitoring-federated.md
├── edge-optimization-lab/                         
│   ├── model-quantization/
│   │   ├── post-training-int8.md
│   │   └── qat-pytorch.md
│   ├── pruning-techniques/
│   │   ├── magnitude-pruning.md
│   │   └── lottery-ticket-hypothesis.md
│   ├── federated-learning/
│   │   ├── privacy-preserving-cv.md
│   │   └── distributed-training.md
│   ├── compiler-targets/
│   │   ├── tvm-tutorial.md
│   │   └── onnx-runtime-guide.md
│   └── hardware-specific-optimization/
│       ├── nvidia-jetson-optimization.md
│       ├── raspberry-pi-edge-ai.md
│       └── microcontroller-tinyml.md
├── production-pipelines/                           
│   ├── ci-cd-for-edge.md
│   ├── monitoring/
│   │   ├── drift-detection.md
│   │   └── edge-metrics-dashboard.md
│   ├── ota-updates.md
│   └── edge-security/
│       ├── secure-boot-implementation.md
│       ├── data-encryption-edge.md
│       ├── threat-detection/
│       │   ├── perimeter-surveillance.md
│       │   └── anomaly-detection.md
│       ├── privacy-preserving-cv/
│       │   ├── federated-learning-techniques.md
│       │   └── differential-privacy.md
│       ├── model-security/
│       │   └── adversarial-robustness.md
│       ├── edge-device-hardening/
│       │   ├── secure-deployment.md
│       │   └── secure-communication.md
│       └── industry-compliance/
│           ├── regulatory-standards.md
│           └── ethical-ai-guidelines.md
├── reference-architectures/
│   ├── industrial-camera-setups.md
│   ├── edge-server-specs.md
│   ├── iot-connectivity.md
│   └── edge-cloud-hybrid-models.md
└── _integration/
    ├── cs-notebook-redirects.md                   
    ├── companion-resources.md
    └── industry-specific-regulations.md

Getting Started

Important

This project uses a submodule edge-ai-engineering located in lab/edge-ai-engineering. Please initialize submodules after cloning the repository: git submodule update --init --recursive

  1. Clone this repository:
git clone https://github.com/afondiel/edge-vision.git
  1. Explore the Edge AI Engineering for foundational knowledge.
  2. Dive into Industry Blueprints for hands-on, sector-specific language AI guides.
  3. Use the Edge Optimization Lab and Production Pipeline for deployment and scaling.

Contributing

We welcome contributions! Please see our CONTRIBUTING.md file for details on how to submit improvements.

License

This project is licensed under the MIT License - see the LICENSE.md file for details.

Resources

Books:

Back to the Top