Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Comments

refactor(project): using single env class#36

Merged
shenxiangzhuang merged 3 commits intomasterfrom
refactor/env
May 7, 2025
Merged

refactor(project): using single env class#36
shenxiangzhuang merged 3 commits intomasterfrom
refactor/env

Conversation

@shenxiangzhuang
Copy link
Contributor

@shenxiangzhuang shenxiangzhuang commented May 7, 2025

Summary by CodeRabbit

  • Refactor

    • Simplified and flattened configuration structures for all supported algorithms, removing nested config classes in favor of unified config objects with direct attribute access.
    • Updated all training pipelines and test suites to use the new flat configuration interfaces, improving clarity and maintainability.
    • Renamed and consolidated some test functions; removed several low-level or redundant tests to streamline coverage.
  • Chores

    • Updated documentation strings and default values to align with the new configuration structure.

@shenxiangzhuang shenxiangzhuang self-assigned this May 7, 2025
@shenxiangzhuang shenxiangzhuang requested a review from Copilot May 7, 2025 04:09
@coderabbitai
Copy link

coderabbitai bot commented May 7, 2025

## Walkthrough

This update refactors the configuration management for all RL algorithms (A2C, DQN, PPO, REINFORCE, SARSA) by removing nested `EnvConfig` and `TrainConfig` dataclasses and replacing them with single, flattened config classes per algorithm. All code and tests are updated to use direct attribute access, simplifying instantiation and usage. Some test coverage is reduced or streamlined.

## Changes

| File(s)                                      | Change Summary |
|----------------------------------------------|---------------|
| `toyrl/a2c.py`, `toyrl/dqn.py`, `toyrl/ppo.py`, `toyrl/reinforce.py`, `toyrl/sarsa.py` | Refactored configuration structure: removed nested `EnvConfig` and `TrainConfig` dataclasses, introduced flat config dataclasses per algorithm (`A2CConfig`, `DqnConfig`, `PPOConfig`, `ReinforceConfig`, `SarsaConfig`). Updated all code to use direct attribute access. |
| `tests/test_a2c.py`, `tests/test_dqn.py`, `tests/test_ppo.py`, `tests/test_reinforce.py`, `tests/test_sarsa.py` | Updated all test suites to use flattened config classes and direct attribute access. Removed or simplified tests related to nested configs, agent internals, and replay buffer. Some tests removed or merged for brevity and clarity. |
| `tests/test_a2c.py` | Removed tests: `test_agent_net_update`, `test_trainer_evaluation`. Renamed variables for clarity, simplified assertions and test logic. |
| `tests/test_ppo.py` | Removed tests: `test_replay_buffer`, `test_agent_creation`, `test_agent_act`, `test_agent_net_update`. Updated config usage. |
| `tests/test_sarsa.py` | Merged and renamed agent and trainer test functions, improved replay buffer test coverage, and switched optimizer in tests. |
| `tests/test_dqn.py`, `tests/test_reinforce.py` | Removed imports of now-defunct nested config classes, updated all config usage to flat structure. |

## Sequence Diagram(s)

```mermaid
sequenceDiagram
    participant User
    participant FlatConfig
    participant Trainer
    participant Env

    User->>FlatConfig: Instantiate with parameters
    User->>Trainer: Pass FlatConfig to Trainer
    Trainer->>Env: Create environment using FlatConfig.env_name, render_mode, etc.
    Trainer->>Trainer: Access training params (gamma, learning_rate, etc.) directly from FlatConfig
    Trainer->>Trainer: Run training loop using flat config fields

Possibly related PRs

Poem

In a warren of configs, so nested and deep,
The rabbits grew weary, their patience asleep.
With a hop and a flatten, they tidied the ground,
Now configs are simple, no burrows to be found!
Hooray for the code—so clean and so neat,
The bunnies can test with a carrot-y treat! 🥕


<!-- walkthrough_end -->


---

<details>
<summary>📜 Recent review details</summary>

**Configuration used: CodeRabbit UI**
**Review profile: CHILL**
**Plan: Pro**

<details>
<summary>📥 Commits</summary>

Reviewing files that changed from the base of the PR and between 1fc8ee0413587d7e0923252b450420c091be96d7 and 7d097d600309aa650dc9f0826b6652c6d528fe7b.

</details>

<details>
<summary>📒 Files selected for processing (2)</summary>

* `tests/test_dqn.py` (2 hunks)
* `tests/test_sarsa.py` (3 hunks)

</details>

<details>
<summary>🚧 Files skipped from review as they are similar to previous changes (2)</summary>

* tests/test_dqn.py
* tests/test_sarsa.py

</details>

<details>
<summary>⏰ Context from checks skipped due to timeout of 90000ms (2)</summary>

* GitHub Check: ci (3.13, ubuntu-latest)
* GitHub Check: ci (3.12, ubuntu-latest)

</details>

</details>
<!-- internal state start -->


<!-- DwQgtGAEAqAWCWBnSTIEMB26CuAXA9mAOYCmGJATmriQCaQDG+Ats2bgFyQAOFk+AIwBWJBrngA3EsgEBPRvlqU0AgfFwA6NPEgQAfACgjoCEejqANiS4USAMzRj8FABS98IsQEou2RPAwiSH9Aq0gyCUYLNEREAwA5bGYBSi4AZgA2AwBVRFTg2DIAD3hMIgAvWGwyo31jcCgyenw7HAJiMmUaeiZWdi5efmFRcSkZeSYlKlV1LR06kyg4VFRMNsJScipuhT6MTkgqAHdgpOY0Cnk5BSmVNU1tXTBDetMDGkRcRAB6D9wAfTQACYGBpuLIOAYAEQwgwAYjhkAAggBJDpbah0U6sC7yFqMWBlaRmQqQP6ndQkSB2Zxk0lIoEAYXQFiIznUsGYkCOMUO9kcBFs9AIfOY+CkkCU3CaZAY8Gk/Cw5E+WKYGDs8CI2G28HwWAY0ViCpcAAMAKIYCSMvUaogm9AYegm6BUALW9Wak1eB30AIqtD0PxUtDU6K4GjkHo2zXa6i6rABGgUBwMEgaGAIZABCT4CxSei2MUSAJBeDMbjOL78Vq4Qp5KIxPLITCB7i0OOBFkWMnSXCMGIK2vUBQYT4UbBiLG0xypo1Rj1anV6oaeKsz5y0EsWWTpuBUv7IDD4E5+3CYcSYyAmhmM922+1HDmS+C2MSQADWJFkRw36AoWrYfZkG2Qo+CHJVe1VaMgkEVdEA0IwUSwWsqRNP5AScCh/gYCh1HgBh/nIXATQAGkgCQLlKAQwgwNA2GQI5KCpBhCUCLE7AoFgrwif5N2Ye0WyvAV40IpJ7RFE0Al4ssBMdK98DwaT+OpWkDUo3BZDIwSI0QVTbDjZcGDQCwLAYpjgjLbgLHgDUsWuQtxRLcIiis/D1ElDTpWCaU5Q1IzxD1eCSVQ9DbCstBZH+ARsDsOxKAfXl/HLazbPoeySCLJyUPQWhNwCrB8RDPI1XoEgXMoeUMFTH0+TDLFG0ofLEC0syTPQZBssQOjXM7P4yKsNBi07PVt3QCzQipMrpVw2Vg1yvDl0E2w8j7P4EIMJCr3QtBNgBAVSLpSaKIsap8sgMUlB7T5uV5Bz8y0uTsuE5cqDY9q8goM6eWQJLXNSsl8DGzdXz7azrrYZJKEQBBuAJUR33Wvctt7bDoISn7NQwGz8PPUbfpS+VhUBlj4cVUaQzik4CG4MArCkbs1VtdBw1w6KPhQUcaADatIGVHY9WkMjbDsKwxCy0kReoCMoIXYJcHHMRtTTYLkc+f55e0LZsP0/L0cgbA20xIn9frbLJfDTp5yZ7gLjokgk2bOS7vqo1PvjZBlw1gInNgWRpptqg2Adulh0Y2weFsYsFMQUa+boRHSXYF8QpRnb2EI+3/gN9saFkp10K9rWSGO0743tOxsCqpruXM53aHWgAxAJjO3Mi0JR5hvfOCx1ddLHAj17OjYBk39wlsNpatzUavx7H6oYJgKE3UIdyMAB5KQqBMsjspYolgIy8UqTjqegj8NOyNnux5APSB0syztdLYBRN7TyAXDTIgNDI5hsAscQrKTXKjNKqCoAh8nClcGKcUKBaV2rze2+tDY0DIsXYypc9ReAegWMgdtggsCpBRXCKgrDIBpHwNSuENK7lJGqeWuZQzHhqhYfARB8I82yoWTWWVewH3OOAtU/gVT7G5E+Xguo+ApEJFHSReBRG1j5LQCcUFkplXUPIQSiAmDSnWkYBEyJ/5dHdiPbKShKEGVHDzKalYpx8G4Ngai7Ck7iGJAYKAAAlQ++Yrp9grlXeMXATRKBrKnXaGcARDxoC4Lw9pwHt0+D8baIIwSyBNG4yAniixYnJH4sWepAnBJ8b3TWlB/hoJOhY6JsSsDxK+L8VOyTwRpJhFCWobwDz1LVrQAAjhgFJkIWnwkRKidEXQsSIDOLiHme82JxAMEjckkwqTfSQTnbJgNhaiz7CGYWAp2TDRrKSE0AARXpd5PQNliHfeQd1xbH0gk6CIectp93tBMgQYBGbT1giMR29BzYRjuS+Zm8t4BswVMDEYo1EyAxOWctG6YkRtWFkxUBHVAYnxBazPAwYF7SCbJAayn4rxfK/hEDQPFaJsGeSaUlGhC4aCIHRc4D5a4kHCqmegj4FGQrfFLbFNB0B4qND9CcsB2okughSy0hE7Y0rpUynEJp0zWgoMtCsjotyaUOigcslYPatHNJac5doarOj7ia1l4c64SpQho8OR5CV6lIHwIM9cMz7l7P2Al5CRy2ljGdY68Ac7xh3n3SgjAdahpqp3LG3cyR9ycmHKkF057G1POeUogq4UYEtfI8V5sPxfh/EvP8AF2BZk5iQbm+JMXvM+dBFcvyaHBldtXZNqzh4ihJgwd8OqAWWyxWCnFyBeW4G3OmeIxNWKkDMuHc4l0RTZXJCwthDAyJ0M4t2EWx4yK0koJxPgrFaDWU7CkWQep6ABjQNwcQvVAbZXICcUlAb4xywVrgJWuihkGKTBY9FOqzHRCXJY/E1jPq2J4A46yDBwj7Dwq4jxXisSWUrDzI1Vo0ZmpdJrPNHEuJoXwLICgFgNA9IwNU1WdT0LkZScq9JU6CT7xHrks6qlDQYyILRT9y0ADcZMb5eqWTdZAkT1mj1DFLQdOa838uHezU81bmitDrQ4htssfliCCoMtx7TeGdIBNwCs/ToSwn0SMzYYz6ATJxJcaZM7XELK9RMykKkwKkgAAoebXiyNkVDOQib5CmQU4nnbnT/gAsIt9bB1WNiaTxkCABC0D4ptzNMAyqqYDraU8959Au0ADkyAcLVvylpPJGBsEINwCWvtYnzr21gIoeCkAADKPlsZGRMtqluPiOqEj7Bm+Dw9BLnCxvY2LV4EvRFkMl2K8UzXpemplkg9pNNVg7UoKw3Rdy8PIhVa+dzIBeZ82nfYRWRxjgnGVlAVYTT7Qa7WRQd8SDSIkVV9QyATRESzsg1bj2mtcvMsZXSooj7uqRqhz6BqrwYCSE0tLxq0ZpYy7NA68X2UzbmzA7LclzW4awx2kg1lY0jYXhuLVCcU5q1JeXSuFXAtieNpskYY0B2Rj9TGEDHMkwpmsAglUjzLQ0sLgJFm8mFQdrCtETl1znwgyHeCj2NSTuWsRW24xgkhsXnbeZGZpBjZBkOvWMdiuR3v0/t/SVC5pUSFldSjm/plPW9tLb239vVteHTK1ss8BgOtx1SVix0y/AEC5KShiiVLIEzsvIG2sQnIBztsHMdo0JKq6wyBCN4EBc7FJZcpsVOqPFICKUoPutqT06+ryVN/0RTa6zahDPC4HxPlN0noOUNHdc2d5i/P62grzKOehWNZZjIl/7qa1jb6VlM5Hkbx9JATjs5lkzRMlA+dCy8U5TFGHZN45w26LD59SDrUY0+vrNdw4BiULQfjnCMrcN6ntmkDA/CKmq7VtzPJS3x6bBu6CV9QyZwEGZUZqBNEpChKNPUKrUfeNQuJyccUcFtfgV+NqewOKN8VYMHY6DhPbGLLtDZTHCKO+FLPgQSM7QbfYSgWiUyGqIqaPTrYPfEF9bnE/KkcBA8b9czQxEDADUxUQYDf9KxFyGxZoOxaDJxeDFxOZJDLJYUL1afQKQJUKYgyKaKebVwGJNubaMJcveMKpHQ0JdOAUQws1XQ9OH7MTKpakTiLkWpRJFGIzfAOjBCKAbIP7fOFGUlGwuJDpdCZwujefE3ZOPlcXJXD/E0Zve8bvJTHmXfC0TDFvbDC1BFdJDwtZLwtWQuMvaAjAXwmpfwpw4zJpEeBvS8KI7zPNblcVdvW2TvCgStJ3eIh5TnIINSEVNwyADI4eWpf4OA8fBAwIAoqjRwtWQI0okUI3OowOe2LvZcSotePNRTGtFTVo/PDowvUzVpXTMAIwIotWWwAIchVMEzQZczNESzbYcZSZOzFghzOZJza6YTWfTwkeFnPlCyZKNNNooAhMag5MRwKkX1DHY45wVMNXY7SOXUPwAPXeQA7nFZTFGo7iYXcw15U4D5Afd+PfLDQSfHI/FvLBGqW+GcfFLEDvOYxoukTibAIgcVFCesTFOTJXFA/XBUMLRk+5QXNogvBUfDLkKHNcOSFY+gVPeQFaegttX47nSk4OT2UkamWmYuYnKbEgMEigCErDIbU4jMVYebLTQDfkCLcidBZiQoXtcAt/T4LiVg4Pcom7bScNKA0rN9A8LSNqfEI4BAFiXmJhI3QtFk83IlVCSlOVNuXSPMOgdWWAZaJrCwWgdHOHZgMpbgJARQaQXHJ0AaCgSff4a4+0cUyIzxDUrUlvNkvUehbdFhE4QSVddhfEZdfAx/Tg0kLqNgPdDANPUkIMwVMkq5QSQReWa7N9Rs2hRtbEi4c0okY2CmCeQdK7RWWwbg4ZXg4QpdUkIDW2auMDUQiDcQqDRxWDZxeUWQjJZDX0PVT6dDRI/fJ0Q/XNLDAUraIjEjDQI49UcE/7Pw/TVQ0stMJpLoxjdkgDJQgqChDjCyLjagJWRAfjEaQTZ4jMwLWvQmYI4MSTC2DnUEz8zUkgZYgEvnWI1Y3PVfaeTY6QBCHTCAPY94X8lGLqRotAM4szYZS4zoa46zW4vEVoEClWckFzQVV4zI945DSUdlGUKqU8yIogWQZgWifwMSGqKUV8YePvRtCi5AU0W85HK8B8y1Ykj4u9IIOcqTDnO0s6RcnjDgmpVrC4LqSEpGPoisGDSKIiPWK+NC9KKlJyIhKiUhGqW5TsKaGDdyWgTyc0+GFrJy1QyBKKMgvWMgViWXEUTeGyK4V7QaCRbkQoLAdsnqIIFE8gIoPsT4TEMAZ6LAG2F8cYHKZeEy4IUQS9ZyZbWaGqHtd8JyReBXU9d8N+WtMqbZCraKts9lbc4MeBfQxaOSSqy/DtNgf8FDfYQGBgiaYvSgunfxGA4IblFiI7fAW9X3coCNZ89xAAWXa04lhhFCRHbC5EEj8C6pzIjT8pIWPjthGupwBFpz9NrLbVHVCO2XCPN3xBNDsqYuqKfBCrcj7GCTQBNJLjASrRIvUo02GC0xQL6JyIoD1lsCpXqjkjnxFAamvPzxIG6WqGsg0kCuJzQRETlK73FK3wfiCAirhktI/wiBfD1EAm2Rmt2hQIGO7CGNZq9WEsIIk0X2fUbSsqVkCsrjGhCCICi0TUfhoG4Bag+mMtOGFUQArgZhYEAS+g5AUj7APWcBaw3mUG3kDweK+L+g0TkguhoPgGOp1VvmJusi43zU7TzwROD0HMgvX0BNnDIksk4iGnaOA3UXaqPioFIB5k/AyrewtpXN/SMUChMU3MEO3OMV3IrH3P4AkKPLg3EBkNqBgEUKrzfTxrtivSdsoANxUOMP2G1ldL1BsPxIsNbtMJiV2DUA5xhXWt2hGIcIM3+EYq6jo3SWgCrq2qwFrrYFoGbuyOdLbsqT7sACTCYvbG0eg4gESe5ippbYtpWiggYjCwb4YEUEcEAZVi5EdijEHYGzc4O43ih4lWCyt9WW8OX1bKG8XzdkWsLkFZTy2PS7XMYNDsIIXgYuGEmOCUsa64q8HS5I/E/SrDHORwDjJG4m8aZWqkSuH468JkPNLBzYmhVAC/Eh28TBwG6FKqE6JQZsdAy0bmjAXmsNJ/IgKrcpDBKq+oqk5sMhMMM3dmLPdzNYVGpmAfFVEA6QDVeqgPXrFFPG2cDmHVGhh8hbTYkk0kfhLAMqUQPAN9aifAXtK/Qht44m3W43KkBm6kos587KIh/6fPUUlonk2yBMkalYRh7AZhuDYsTiDh9gSNduyrfgQ6zuY6vgHMyfQ4TELh72TsX2f2QR4OFwRVc4fqOiAQdsf4fqfAK5JgDAtyCtMiZMlIPgMDNM3SZh4kvh4PBx8AwSHkR0AQJ1IgNhTsSWIgT6m6DpjmPCYyV24PLrbsFZEHQGImogkWVnKW3kn+tMD1Lp9hQcysrdRhE4Rs1Wnh8IEuCxKrSg32jklsrAenBzWgMiNmLsXk/sglDtMB2c/BqwZU+mMR3FWcAZuGk0r+5cVslNTWO+FhCxqZ2gIQUPcTc4XAX0xZwtfPchGFmqOfJ+KkX5/+U0k6Y0S3fqatXMxAy8dk/5OwyAAAdhIDAAABYR4AAGDQWl2loEL3SAK2reCwHeWhBzHAwcUkaR8inBv5TCnSQPf2s6YOoiv++kJkCAlJmB+AaUU9ZWIwH9JFP9auDc9FnOvgkQgu/mYumDUuhDM8zJcHSUagbBhqRAQJVB+8NuDBlvKrRfHkmhvNOhbhw6ZgLo262/MaC/QtchjjQJG8SGhRXoAerELmkJzh2VyfXhw5s6FpiVU3Xsyi9It4ocj9WkfwaC6y9DG8bRnGkeMk29HVf10R117U5G53Z1v22WZZqi2EXY/Y18y+2jW+k+i40ZTi7EV+nipjWZT+sVt9KVqkY5AARXiEAf8xAdun5EwnAcEUgZDV6ljJICpDyCT0FUDatZxNtc9HtdSMdfoO5CoCMwjRkzRm9CHtWoIf1ixn+kveSJ3diEocPCXyvFOUfOSPdb9DuajZ5vYGSbjbJAuFID7CIlqyq1XR6ZgYya715EDOBvZhRKUDPD9yWqVclHMaSHYAsTkbVQUcvS1Q9O7FUdmkrU/d6ULeeQIL9sug7VmaFW+ZlOafg8cfofkGcczFedQi/YIrKtAUSZQkkYgh5PrQjzfY5gNACYVBApHgOvEBiYjW9gvGsnKCOYgRm1IM0IsmOrImybQEvlzG8VrDjNzGua6dg8k36dQTYejbCamsiZFqdQOpHDyndh3jA8QUg+cDqz+1abkgEGoDhb2Z4HY4GYAHUWxEsrOnJVPSh1OA65IfLOwO1pnTnmd7Atky2P2EWZbhylyVmkYDHS67MKxEwULFAfj69OZM0Kj+PCcnxC0k2PGBqeT+90avhJ1p1mN5qAx9wH1xzr9WQgGAt6z10Rwqztm90+Bzaj0WxT0iB4Kuyb5xyFw/j31rs5atcqx2DLH7aY967/l5zIw061WM7LFNXxLzEdzWhwN9XDzDWTzENzz5DzWzxNKbWkdj2CTv27W9HuSdgn2Yjf2EmUIvX0kfX6peOIHrIRKX3rWqP/uLkUTesAPQn9hgOSwvPFqIP7YoPmFWFrOk3EPRHU2GI29jTMXEahXaBzGxwSwWtIADBIB35jl7BS9fRCjW3vh23UkvAT7m33heeJiIRO22Lu3h4X6pl7j94h2NvudR3js8tjI/MORZ2D5gtnBF3Apl3oGI44Ho48YkGKj93TV0Gj2YjEfcGVrYfXG0LFiyGLWKG9T32TgnesMweWHuwMfeaSSwuk2izEP5QfHmbHJOx+WYIuuWtVV1ViOV5SOgtUV1HAWbhBuXdNQ3cAAqeVKVBlXPg7pj4P2xs2U7rEWlKVQvinqTgIGTwJv3xzvI8L2Yh2bH1Jv2SgFpvFi4BJ5BrRQoJRJbop7ppyPpwLrlFsTphL0ZjTs6IOa9M8FAxTo6lTrGNTsZs6I8E4IML7OleJksfMzEapZo0GulBlA/wII/3OFAlzlhNzpKP3C4UaXf/tcv0+akUP2gMhWkYL2F8VfwG7S6xv4ww0aSkNziYCVxcAPfAlp2GQaYByAozQIKglRxCcmAJkEYNGkEguV8I8gerOynMawABmpXdgOV3wCVdxaOwWroJx1xN4qiTXBRL1iD6cdw+kdXLh10bQOl4wPXAdrOgO4LoM+2UE7NOw15rNJuU0CqG1WPTD8i6n+Pzn+D2o0AiuAzeTlOSgwxYJShXHjMZHoIGk+w/zLAGNjTj+8KCpfWMgpHpKm0dUwglzmmUVal5zua5DVkNy1a3c8693Pco93sQl0XuJrC8h90tYipvuSRAHn90tROs+WrRT3j+0rIesIe3rXKFiER6BJoiqPJ8OGy55BN2GJgx6IHwi4SpC03jb/pCDZ5QATQYZNgFwDHBpJShsOJIGUktBI9EwNQ3QFeDxpTB+iGZKofLEgAAAfSAFOnIAtCyhkZfMDGXM4JkuAO6agMMKvCGcphLCGYaz1aEmhogyQApgsPwBLDah5Q7gP4BYQYBNh2wlYaQIOqRRSmdgI4cRGWFlCCAZ4HuEp0gh7CuAzQm4VtDLAkB/gTWXCOUGUI85ZhJoMTKmUIFND9gAI5Mv0W9h/8SYoI64TsMv5EBr+/OaYXCJWEIDq0PcBEUiK4ACB8AuYAEaun+DtNaAAgHEXiIsDNIm2NFFthfW+AfkTiAFcXucUl5XFpe3FezPLyHzMRh2y4ZXu4jNAoh4gDcNeO4kZBmgRBwDQLLsgXZpQbk2+VdvY2hLG9EGW7VCObxpQOtreLvQVoD2BSYp9ufoYNBhV6AVh/A2aEsrhTLL3h0wSEJ3FpFh4r4nQFohkc70+6QUVkiYTiEohSoDZ5cUKCYLEL/bo97OgHERE6Q9ZJsJkvpXkOUJlT410c7Q0pM7XRyjDoyZnaQPGUTJtxDOSZeoeynTLMN0cWIgsm3BqJRQBwSrLMleEJHEiBAyqSAHHyI6apE+mjZ0V+Ro4F5Gc1jFamYOkD2N8hTjUlmXzMpkUggEjEOMhHMF0lxUUfJtBjTd7ScmGcnO2uAkb4iInOe6aJq7TX4jMkuN2O/niNhjd8ao0XR0LFxg5OQVoBsFAqeNoCxckCvMPBEiylhJpeQTHIyrl2lr1stBX6VZiVAWi0E+QjoCqJ2A6qO4jR7tMLvf1higNGCdeOZinzHjAl3+9zZDsV30bAtSBcecgSIhWSoVxMDpJCQgmXwoScKLohgbUUBot9k8XeNrmsQ4Fo04I6YNli3E5bTlZkh3dKqx3n6YBjBYTa4Eu3h4G8mB+Qm9rD0R4otkETkFRvYEQnNhycS8SnCq1VZODjE13Lcjq3zpiFZB3g57tIVPIV1TW3iG3kj1xK/dNRB7QHqRSdHqlLR+FL3oGPB6FBIeUAaHmKW1GNhAkbYvCqG3FQZCOca4vmsKDyGt8oYJQk4XGLtjdCcabwk0ImKwjO1opfQgYQLABGpjaA4wjMRZyuEAj5hjCY4WUIhH5j6m0gF4WCNinFjMQOU2KWWOC55AlWZI/ERVNYREip+jUikemxEqZtrs2bTGDBXDig1vJqYDsTY1TClt4WpEoafZPLJC9qRIvWkYfRYqtIu2rI5+uyLl6DsuR3E7+vbANhuYdUrWJEO4kOkSiAsKyQSVAx2DcdbAQPJIR5JFR7sfuoQiyXaGOansb000K8ODQcpXsecdvJWmEEdFfT7KaAV0YEN8bu9gZENOhiDAYb18FQwY4JqGOgGxsceRPUfp2FJ7ooaYdMVUkUPAJBVWakQ8Tj+OXINj5GiARRiRzubkc0UI8AwZ/2Jzf8NGYNEGR2MY7djmO+KOxtRIaIA1YZXHIcePBHFOhvpoMqtoJ2qjjic8ZnCwTONaI18FxdfJccVjtoigV+ynOJviz75JNIAhnYzlGWFBrtoYFnEftZ3H52ckZmPfQc32PEHiH+6tQlL7i+BVZaxwzDfnPzfQL8sGKBDFvoJ5H/EaBWaN9Gn1K5mMwWvIDLkxxhZwtIhJEkWVDJ+nJEc23GJWKwKOyzjJyckP/NJLajMCBZPA+Tv10XQuCFAI3dXpKIm4AF9gWzHdEcFm7hA1UtIaQSWEcHqs1JpcjScIS0mF1aQukqQmXQMnpIjJd0t0Va2CHhC9KVvSyYJF3xizfJqJCQCLgxL4yEhvrEMOWwTnJDE54s5IiiXxnhSyhFQ/nNUNinxTOhSgJKf0MGGrZYp6UzKSbMmH5TURZQvKSiIBHnAigE+Q/iqGeH/CKp2sw/tcWqnwiWptY9qZSJ2J1ADAiwODM7nhrtBVpKiXmjYDQAnAZedmASRmWmD3A5gTwQwLAt6CdwAQwaRAPmTgZL5oyZVa8tAtgW5Q7AAARhIACAGAQIDIGS1igABWBhWkDQCZA0AdgdhbwrQBUtaWdgKlkCAACcJAMlgwtoAAAOAQGkFpadMFgDQSAAwrsAMB5F67WllSx4WcL5FZLWgBS1paSKgQaQIEJwqBACAqWnCvRUCFpYMAzFDClIJIoyAmL8FMC9RcYrMXGKMgjLZRZIrQBoAMg9i2gAwEkV2BaW8ithQIAyBhKQQHi6xfIrihktVFzwV4FACIXqB/gpC8hcWEoUZSmg+CoAA== -->

<!-- internal state end -->
<!-- finishing_touch_checkbox_start -->

<details open="true">
<summary>✨ Finishing Touches</summary>

- [ ] <!-- {"checkboxId": "7962f53c-55bc-4827-bfbf-6a18da830691"} --> 📝 Generate Docstrings

</details>

<!-- finishing_touch_checkbox_end -->
<!-- tips_start -->

---

Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

<details>
<summary>❤️ Share</summary>

- [X](https://twitter.com/intent/tweet?text=I%20just%20used%20%40coderabbitai%20for%20my%20code%20review%2C%20and%20it%27s%20fantastic%21%20It%27s%20free%20for%20OSS%20and%20offers%20a%20free%20trial%20for%20the%20proprietary%20code.%20Check%20it%20out%3A&url=https%3A//coderabbit.ai)
- [Mastodon](https://mastodon.social/share?text=I%20just%20used%20%40coderabbitai%20for%20my%20code%20review%2C%20and%20it%27s%20fantastic%21%20It%27s%20free%20for%20OSS%20and%20offers%20a%20free%20trial%20for%20the%20proprietary%20code.%20Check%20it%20out%3A%20https%3A%2F%2Fcoderabbit.ai)
- [Reddit](https://www.reddit.com/submit?title=Great%20tool%20for%20code%20review%20-%20CodeRabbit&text=I%20just%20used%20CodeRabbit%20for%20my%20code%20review%2C%20and%20it%27s%20fantastic%21%20It%27s%20free%20for%20OSS%20and%20offers%20a%20free%20trial%20for%20proprietary%20code.%20Check%20it%20out%3A%20https%3A//coderabbit.ai)
- [LinkedIn](https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fcoderabbit.ai&mini=true&title=Great%20tool%20for%20code%20review%20-%20CodeRabbit&summary=I%20just%20used%20CodeRabbit%20for%20my%20code%20review%2C%20and%20it%27s%20fantastic%21%20It%27s%20free%20for%20OSS%20and%20offers%20a%20free%20trial%20for%20proprietary%20code)

</details>

<details>
<summary>🪧 Tips</summary>

### Chat

There are 3 ways to chat with [CodeRabbit](https://coderabbit.ai?utm_source=oss&utm_medium=github&utm_campaign=ai-glimpse/toyrl&utm_content=36):

- Review comments: Directly reply to a review comment made by CodeRabbit. Example:
  - `I pushed a fix in commit <commit_id>, please review it.`
  - `Generate unit testing code for this file.`
  - `Open a follow-up GitHub issue for this discussion.`
- Files and specific lines of code (under the "Files changed" tab): Tag `@coderabbitai` in a new review comment at the desired location with your query. Examples:
  - `@coderabbitai generate unit testing code for this file.`
  -	`@coderabbitai modularize this function.`
- PR comments: Tag `@coderabbitai` in a new PR comment to ask questions about the PR branch. For the best results, please provide a very specific query, as very limited context is provided in this mode. Examples:
  - `@coderabbitai gather interesting stats about this repository and render them as a table. Additionally, render a pie chart showing the language distribution in the codebase.`
  - `@coderabbitai read src/utils.ts and generate unit testing code.`
  - `@coderabbitai read the files in the src/scheduler package and generate a class diagram using mermaid and a README in the markdown format.`
  - `@coderabbitai help me debug CodeRabbit configuration file.`

### Support

Need help? Create a ticket on our [support page](https://www.coderabbit.ai/contact-us/support) for assistance with any issues or questions.

Note: Be mindful of the bot's finite context window. It's strongly recommended to break down tasks such as reading entire modules into smaller chunks. For a focused discussion, use review comments to chat about specific files and their changes, instead of using the PR comments.

### CodeRabbit Commands (Invoked using PR comments)

- `@coderabbitai pause` to pause the reviews on a PR.
- `@coderabbitai resume` to resume the paused reviews.
- `@coderabbitai review` to trigger an incremental review. This is useful when automatic reviews are disabled for the repository.
- `@coderabbitai full review` to do a full review from scratch and review all the files again.
- `@coderabbitai summary` to regenerate the summary of the PR.
- `@coderabbitai generate docstrings` to [generate docstrings](https://docs.coderabbit.ai/finishing-touches/docstrings) for this PR.
- `@coderabbitai generate sequence diagram` to generate a sequence diagram of the changes in this PR.
- `@coderabbitai resolve` resolve all the CodeRabbit review comments.
- `@coderabbitai configuration` to show the current CodeRabbit configuration for the repository.
- `@coderabbitai help` to get help.

### Other keywords and placeholders

- Add `@coderabbitai ignore` anywhere in the PR description to prevent this PR from being reviewed.
- Add `@coderabbitai summary` to generate the high-level summary at a specific location in the PR description.
- Add `@coderabbitai` anywhere in the PR title to generate the title automatically.

### CodeRabbit Configuration File (`.coderabbit.yaml`)

- You can programmatically configure CodeRabbit by adding a `.coderabbit.yaml` file to the root of your repository.
- Please see the [configuration documentation](https://docs.coderabbit.ai/guides/configure-coderabbit) for more information.
- If your editor has YAML language server enabled, you can add the path at the top of this file to enable auto-completion and validation: `# yaml-language-server: $schema=https://coderabbit.ai/integrations/schema.v2.json`

### Documentation and Community

- Visit our [Documentation](https://docs.coderabbit.ai) for detailed information on how to use CodeRabbit.
- Join our [Discord Community](http://discord.gg/coderabbit) to get help, request features, and share feedback.
- Follow us on [X/Twitter](https://twitter.com/coderabbitai) for updates and announcements.

</details>

<!-- tips_end -->

Copy link

Copilot AI left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Pull Request Overview

This PR refactors the project configuration by consolidating the environment and training configuration classes into a single configuration class for each algorithm. Key changes include replacing nested EnvConfig/TrainConfig structures with flat configurations and updating all corresponding references in the SARSA, REINFORCE, PPO, DQN, and A2C implementations.

Reviewed Changes

Copilot reviewed 10 out of 10 changed files in this pull request and generated 2 comments.

Show a summary per file
File Description
toyrl/sarsa.py Replaced nested config classes with a consolidated SarsaConfig and updated attribute references, including wandb logging.
toyrl/reinforce.py Replaced nested config classes with a consolidated ReinforceConfig and updated attribute references.
toyrl/ppo.py Replaced nested config classes with a consolidated PPOConfig and updated attribute references in trainer methods.
toyrl/dqn.py Replaced nested config classes with a consolidated DqnConfig and updated references in policy update and training loops.
toyrl/a2c.py Replaced nested config classes with a consolidated A2CConfig and updated all corresponding trainer attribute references.
tests/* Updated test files to validate the new flat configuration structure.

@codecov
Copy link

codecov bot commented May 7, 2025

Codecov Report

All modified and coverable lines are covered by tests ✅

Project coverage is 99.73%. Comparing base (cd343f9) to head (7d097d6).
Report is 1 commits behind head on master.

Additional details and impacted files
@@            Coverage Diff             @@
##           master      #36      +/-   ##
==========================================
+ Coverage   98.67%   99.73%   +1.06%     
==========================================
  Files           6        6              
  Lines         376      376              
==========================================
+ Hits          371      375       +4     
+ Misses          5        1       -4     

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

🚀 New features to boost your workflow:
  • ❄️ Test Analytics: Detect flaky tests, report on failures, and find test suite problems.

Copy link

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 2

🔭 Outside diff range comments (2)
tests/test_a2c.py (1)

1-148: 💡 Verification agent

🧩 Analysis chain

Verify test coverage after removing test functions

The test file has been simplified by removing test_agent_net_update and test_trainer_evaluation. It's also simplified the test_replay_buffer by removing second experience tests and sampling.

Please verify that the critical functionality is still adequately tested somewhere else in the codebase.


🏁 Script executed:

#!/bin/bash
# Check if there are any remaining tests for agent network updates 
# and trainer evaluation in other test files
echo "Searching for agent net update tests in other files..."
rg -l "test_agent_net_update|test_net_update" tests/
echo "Searching for trainer evaluation tests in other files..."
rg -l "test_trainer_evaluation|test_evaluation" tests/

Length of output: 353


I’ll search for any references to “update” and “evaluate” in the remaining tests to ensure coverage wasn’t moved or renamed elsewhere.


🏁 Script executed:

#!/bin/bash
echo "Searching for 'update' in test files..."
rg -n "update" tests/ || true

echo "Searching for 'evaluate' in test files..."
rg -n "evaluate" tests/ || true

Length of output: 1285


I’ll check whether A2CTrainer actually implements an evaluate method to confirm if its removal from tests is safe.


🏁 Script executed:

#!/bin/bash
# Locate the file defining A2CTrainer
trainer_file=$(rg -l "class A2CTrainer" -g "*.py")
echo "A2CTrainer defined in: $trainer_file"

# Inspect that file for an evaluate method
echo "Searching for evaluate method in $trainer_file"
rg -n "def evaluate" "$trainer_file" || true

Length of output: 339


Add tests for A2CTrainer.evaluate and Agent update logic

It looks like we’ve removed both test_trainer_evaluation and any tests covering the agent’s learning/update step for A2C, and no equivalent coverage exists elsewhere. To prevent regressions, please add:

• A test for A2CTrainer.evaluate(num_episodes) in toyrl/a2c.py (method at line 232).
• A test exercising the A2C agent’s update call (e.g. invoking whatever internal policy/value update the Agent performs during training).

This will ensure that both evaluation and the core learning step remain verified.

tests/test_ppo.py (1)

1-139: 💡 Verification agent

🧩 Analysis chain

Verify implications of removed tests

According to the AI summary, multiple tests related to ReplayBuffer, Experience, and the PPO agent's methods have been removed. This is a significant reduction in test coverage.

Please verify that these components are still tested elsewhere or confirm that the removed tests are redundant.


🏁 Script executed:

#!/bin/bash
# Check if ReplayBuffer and Experience are tested in other files
echo "Searching for ReplayBuffer tests in other files..."
rg -l "test.*ReplayBuffer|ReplayBuffer.*test" tests/
echo "Searching for Experience tests in other files..."
rg -l "test.*Experience|Experience.*test" tests/
echo "Searching for PPO agent method tests in other files..."
rg -l "test.*PPOAgent|PPOAgent.*test" tests/

Length of output: 489


Missing tests for core PPO components

It looks like coverage for ReplayBuffer, Experience, and PPOAgent was removed and no equivalent tests exist elsewhere in tests/. To maintain robustness:

  • Add tests for ReplayBuffer (e.g., pushing and sampling behavior, buffer overflow, empty-buffer edge cases).
  • Cover the Experience data structure (correct fields, dtype checks, any helper methods).
  • Exercise PPOAgent methods (action selection, log-prob calculations, policy/value updates).

If these classes have been intentionally deprecated, please remove their code or update the documentation to reflect the change. Otherwise, restore or rewrite tests to ensure these critical pieces remain covered.

🧹 Nitpick comments (3)
tests/test_a2c.py (3)

19-20: Variable naming inconsistency

The variables are named in_dim and out_dim, but the constructor parameters are env_dim and action_num. This mismatch could cause confusion for readers.

Consider using consistent naming:

-in_dim, out_dim = 4, 2
-net = ActorCriticNet(env_dim=in_dim, action_num=out_dim)
+env_dim, action_num = 4, 2
+net = ActorCriticNet(env_dim=env_dim, action_num=action_num)

Or alternatively:

-in_dim, out_dim = 4, 2
-net = ActorCriticNet(env_dim=in_dim, action_num=out_dim)
+in_dim, out_dim = 4, 2
+net = ActorCriticNet(env_dim=in_dim, action_num=out_dim)
+# Variable names reflect the role (input/output dimensions) while 
+# parameter names reflect the domain semantics (environment/action)

61-62: Variable naming inconsistency

Same naming inconsistency here as in the test_actor_critic_net function.

Consider using consistent naming as suggested earlier.


75-76: Variable naming inconsistency

Same naming inconsistency here as in the previous functions.

Consider using consistent naming as suggested earlier.

📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between cd343f9 and ddf1ebc.

📒 Files selected for processing (10)
  • tests/test_a2c.py (5 hunks)
  • tests/test_dqn.py (2 hunks)
  • tests/test_ppo.py (2 hunks)
  • tests/test_reinforce.py (2 hunks)
  • tests/test_sarsa.py (3 hunks)
  • toyrl/a2c.py (6 hunks)
  • toyrl/dqn.py (5 hunks)
  • toyrl/ppo.py (5 hunks)
  • toyrl/reinforce.py (5 hunks)
  • toyrl/sarsa.py (5 hunks)
🧰 Additional context used
🧬 Code Graph Analysis (2)
toyrl/a2c.py (2)
toyrl/dqn.py (1)
  • Agent (117-180)
toyrl/reinforce.py (1)
  • Agent (81-129)
tests/test_sarsa.py (1)
toyrl/sarsa.py (6)
  • PolicyNet (33-51)
  • sample (78-97)
  • Agent (100-148)
  • act (113-121)
  • SarsaConfig (13-30)
  • SarsaTrainer (151-219)
🪛 GitHub Check: codecov/patch
toyrl/dqn.py

[warning] 279-279: toyrl/dqn.py#L279
Added line #L279 was not covered by tests

🔇 Additional comments (47)
tests/test_dqn.py (4)

190-192: LGTM - Direct attribute access in tests

The updated tests now correctly access configuration parameters directly from the flattened DqnConfig structure instead of through nested objects, aligning with the refactoring changes.


195-209: LGTM - Custom configuration tests

The test for custom configuration correctly instantiates the flattened DqnConfig with direct attributes and verifies them appropriately. The test logic remains sound while adapting to the new structure.


215-222: LGTM - Trainer creation test

The test for trainer creation has been updated to use the flattened configuration structure, maintaining test coverage while adapting to the code changes.


237-246: LGTM - Minimal training test

The minimal training test correctly uses the flattened configuration structure with appropriate parameters, preserving the test's functionality.

tests/test_reinforce.py (4)

94-96: LGTM - Default configuration test

The test correctly verifies default values using direct attribute access on the flattened configuration object.


98-108: LGTM - Custom configuration test

The custom configuration test has been successfully updated to use the flattened ReinforceConfig structure with direct parameter access.


113-119: LGTM - Trainer creation test

The trainer creation test properly uses the flattened configuration structure, maintaining test functionality.


132-138: LGTM - Minimal training test

The minimal training test has been updated to use the flattened configuration structure correctly.

toyrl/sarsa.py (5)

12-31: LGTM - Well-structured flattened configuration

The new flattened SarsaConfig class is well-organized with clear grouping of parameters by functionality (environment, training, logging) and includes helpful comments. This simplifies configuration management and improves code readability.


160-165: LGTM - Direct config access in agent initialization

The code now correctly accesses learning rate, gamma, and solved threshold directly from the flattened config object.


175-176: LGTM - Environment creation with direct config access

Environment creation now properly uses direct attributes from the flattened config.


185-186: LGTM - Training loop with direct config access

The training loop condition now correctly uses the max training steps directly from the config.


223-230: LGTM - Default config instantiation

The code now correctly instantiates the default config with direct parameters instead of nested config objects.

toyrl/dqn.py (3)

13-53: LGTM - Comprehensive flattened configuration

The new flattened DqnConfig class is well-structured with clear grouping of parameters by functionality (environment, training, target network, logging) and includes detailed docstrings for each parameter. This improves code readability and maintenance.


193-204: LGTM - Agent initialization with direct config access

The agent initialization now correctly uses parameters directly from the flattened config object.


292-302: LGTM - Default config instantiation

The default config instantiation now correctly uses direct attributes instead of nested config objects, consistent with the refactoring.

tests/test_sarsa.py (7)

18-23: Good rename to improve readability.

Changing the variable names from numeric values to in_dim and out_dim makes the test more descriptive and easier to understand.


44-47: Improved test coverage for buffer sampling.

Testing the edge case where there's only one experience in the buffer and no next state-action pairs is available is good practice.


48-64: Well-structured test for replay buffer sampling.

The test now properly verifies that next state-action pairs are linked correctly between experiences, which is crucial for the SARSA algorithm's functioning.


70-87: Good consolidation of agent tests.

Merging the agent creation and action selection tests makes the test suite more concise. The switch from RMSprop to Adam optimizer is also appropriate as Adam often performs better in practice for reinforcement learning.


93-99: Test correctly updated for flattened config structure.

The test now properly checks all direct attributes of the SarsaConfig class instead of nested config objects, aligning with the refactoring goal.


102-116: Trainer test improved with better function name and assertions.

Renaming to test_trainer() is more concise, and the assertions directly check the config equality and key parameters, which is clearer than the previous implementation.


122-128: Minimal training test properly updated.

The test configuration has been updated to use the flattened config structure correctly.

toyrl/a2c.py (6)

12-34: Well-structured flattened configuration class.

The new A2CConfig dataclass properly consolidates environment and training parameters with clear section comments, making the configuration more maintainable and easier to use.


156-173: A2CTrainer correctly updated to use flattened config.

The trainer initialization now properly accesses attributes directly from the flattened config, reducing unnecessary nesting and improving code clarity.


174-180: WandB logging updated appropriately.

The wandb initialization has been properly updated to work with the flattened config structure.


199-200: Rendering check correctly updated.

The conditional rendering check now properly uses the direct config attribute.


214-230: Evaluation logic correctly updated.

The evaluation interval and episodes parameters are now properly accessed from the flattened config.


245-253: Main block default config updated correctly.

The default configuration now uses the flattened structure and maintains the key parameters from the previous implementation.

toyrl/reinforce.py (5)

12-27: Well-structured REINFORCE configuration class.

The new ReinforceConfig dataclass properly organizes both environment and training parameters with clear section comments, making the configuration more maintainable.


135-148: ReinforceTrainer correctly updated to use flattened config.

The trainer initialization now properly accesses all configuration parameters directly from the flattened config.


149-155: WandB logging updated correctly.

The wandb initialization now properly uses the flattened config structure for naming and tracking.


187-194: WandB logging condition updated correctly.

The wandb logging condition now properly checks the flattened config attribute.


198-206: Main block default config updated correctly.

The default configuration now properly uses the flattened structure with appropriate parameters.

toyrl/ppo.py (7)

12-38: Well-structured PPO configuration class.

The new PPOConfig dataclass properly consolidates all environment and training parameters with helpful docstrings for key parameters, making the configuration more maintainable and self-documenting.


209-227: PPOTrainer initialization updated correctly.

The trainer initialization now properly uses the flattened config for optimizer creation and wandb setup.


228-235: Environment creation updated correctly.

The environment creation now properly uses direct attributes from the flattened config.


238-240: Training parameters correctly accessed.

Batch size and iteration calculations now properly use direct attributes from the flattened config.


244-247: Learning rate annealing updated correctly.

The learning rate annealing logic now properly checks and uses the flattened config attributes.


285-296: Policy update logic correctly updated.

The policy update loop now properly uses all parameters directly from the flattened config.


309-323: Main block default config updated correctly.

The default configuration now uses the flattened structure with appropriate parameters for the PPO algorithm.

tests/test_a2c.py (3)

86-87: Good improvement on assertion

The assertion using action in [0, 1] is clearer and more direct than a range check.


91-109: Nicely simplified config testing

The flattened config structure makes the config creation and testing more straightforward and easier to understand.


113-139: Clear and simplified trainer testing

The refactored trainer tests using flattened config structure are more readable and maintainable.

tests/test_ppo.py (3)

57-96: Well-structured config tests

The flattened config structure makes the tests more direct and easier to understand. All the attributes are now accessed directly from the config object instead of through nested objects.


98-114: Simplified trainer creation test

The trainer creation test is now cleaner with the flattened config structure.


116-139: Clear minimal training test

The minimal training test is now easier to understand with the flattened config structure. Good use of comments to explain the purpose of specific parameters.

@shenxiangzhuang shenxiangzhuang merged commit bdd8f65 into master May 7, 2025
7 checks passed
@shenxiangzhuang shenxiangzhuang deleted the refactor/env branch May 7, 2025 05:19
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant