Thanks to visit codestin.com
Credit goes to github.com

Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34,627 changes: 34,627 additions & 0 deletions examples/find-empty-unicode-chars/unicode-char-categories.csv

Large diffs are not rendered by default.

216 changes: 216 additions & 0 deletions examples/find-empty-unicode-chars/unicode-char-search.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,216 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd \n",
"df = pd.read_csv(\"unicode-char-categories.csv\")\n",
"# From https://www.fileformat.info/info/unicode/category/index.htm"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoTokenizer"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"tokenizer = AutoTokenizer.from_pretrained(\"allenai/ivila-row-layoutlm-finetuned-s2vl-v2\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"UNICODE_CATEGORIES_TO_REPLACE = [\"Cc\", \"Cf\", \"Co\", \"Cs\", \"Mn\", \"Zl\", \"Zp\", \"Zs\"]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"def calculate_tokenization_len(row): \n",
" uni_code = r'\\u' + row['Character'][2:]\n",
" s = uni_code.encode().decode('unicode_escape')\n",
" return len(tokenizer(s, add_special_tokens=False)['input_ids'])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"df['Tokenization Length'] = df.apply(calculate_tokenization_len, axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>count</th>\n",
" <th>mean</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Code</th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Cc</th>\n",
" <td>65</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Cf</th>\n",
" <td>163</td>\n",
" <td>0.766871</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Co</th>\n",
" <td>6</td>\n",
" <td>0.666667</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Cs</th>\n",
" <td>6</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Mn</th>\n",
" <td>1950</td>\n",
" <td>0.549744</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Zl</th>\n",
" <td>1</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Zp</th>\n",
" <td>1</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Zs</th>\n",
" <td>17</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" count mean\n",
"Code \n",
"Cc 65 0.000000\n",
"Cf 163 0.766871\n",
"Co 6 0.666667\n",
"Cs 6 0.000000\n",
"Mn 1950 0.549744\n",
"Zl 1 0.000000\n",
"Zp 1 0.000000\n",
"Zs 17 0.000000"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.groupby('Code')['Tokenization Length'].agg(['count', 'mean']).loc[UNICODE_CATEGORIES_TO_REPLACE]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['Cc', 'Cf', 'Co', 'Cs', 'Mc', 'Mn', 'So', 'Zl', 'Zp', 'Zs'],\n",
" dtype=object)"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[df['Tokenization Length']==0].Code.unique()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"df[df['Tokenization Length']==0]['Character'].to_csv(\"zero-length-unicode-chars.txt\", index=None, header=None)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Loading