Thanks to visit codestin.com
Credit goes to github.com

Skip to content

pyarimafft leverages LOESS regression for outlier cleaning, extracts key cyclicities via the fast fourier transform(fft) & performs time series forecasting with the cyclical features with ARIMA

License

Notifications You must be signed in to change notification settings

amarvin/pyarimafft

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pyarimafft library

PyPI Latest Release PyPI downloads License

A Python Library which efficiently combines LOESS cleaning, Fast Fourier Transform Extracted key Cyclicities and ARIMA to produce meaningful and explainable time series forecasts.

Installation

pip install pyarimafft

Usage

import numpy as np

import pyarimafft

endog = np.array(vector)

model_obj = pyarimafft.model(forecast_horizon=12)

model_obj.outlier_clean(
    endog=endog,
    window_size=10,
    outlier_threshold=0.8,
    peak_clean=False,
    trough_clean=False,
    both_sides_clean=True,
)

model_obj.extract_key_seasonalities(power_quantile=0.90, time_period=d)

model_obj.reconstruct_seasonal_features(mode="seperate")

## It is possible to add one exogenous vector at a time

model_obj.add_exog(exog1)

model_obj.add_exog(exog2)

## Call the auto_arima function

model_obj.auto_arima(p=None, d=None, q=None, max_p=3, max_q=3, max_d=1, auto_fit=True)

## Attributes which you can extract

model_obj.endog

model_obj.trend

model_obj.outlier_cleaned

model_obj.seasonal_component

model_obj.isolated_components

model_obj.isolated_seasonality

model_obj.forecast

model_obj.seasonal_feature_train

model_obj.seasonal_feature_future

model_obj.time_train

model_obj.time_future

model_obj.forecast_horizon

model_obj.forecast

model_obj.optimal_order

About

pyarimafft leverages LOESS regression for outlier cleaning, extracts key cyclicities via the fast fourier transform(fft) & performs time series forecasting with the cyclical features with ARIMA

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%