Install with python3 -m pip install .
Test using:
python test_env.py
python test_env_batch.py
python test_env_visual.py
name: "SingleAgentGatheringEnv" # Name of the environment class
verbose: 0
base_map: "" # Path to a txt map of NxM elements | ".": empty | "w": wall | "o": R | "x" -R
map_size: [32,32] # Size of previously defined map (from base_map path)
map_view_extend: 0 # Add padding to full map ( if more than 0 pixels)
env_max_steps_no: 1000 # Max number of steps that can be played in the env -> Reset after.
no_envs: 1
no_agents: 1
agents_collide: no
hide_other_agents: no
partial_observable: [1, 4]
# [0 (no) / 1 (yes), radius] If to use partial observability and
# size of view image considering a radius in pixels around the agent
agents_init_pos: [[-1, 5, 5, 4]]
# [ [no_agents, x_coord, y_coord, radius]
# Position no_agents around point (x_coord, y_coord) within
# a radius of "radius"
agents_init_colors: [[-1, 0]] # [ [no_agents, colord_id] ]
use_laser: no
agents_laser_size: 2
reward_distance: no # Reward based on distance to first reward found on map
reward_value: [1., -1.] # [ reward_values, ... ] Reward value for each type of reward defined
reward_respawn_time: [4, 4] # [ reward_respawn_time, ...] No steps to wait for each type of
# reward to respawn
reward_init_pos: [[0, 10, 25, 25, 5], [1, 50, 16, 16, 20]]
# [ [Reward type, no of reward elements, x_coord, y_coord, radius] ...]
# Define zones to spawn / re-spawn rewards
use_cuda: no
visualize_rgb: yes # Render in RGB mode (obs returned by .render()
store_agents_trace: no
visualize: yes # Should be yes if we want to render
record_data: turned_on: no only_coord: no