The goal of cdgd is to implement the causal decomposition of group disparities of Yu and Elwert (2022).
devtools::install_github("ang-yu/cdgd")library(cdgd)
# load the simulated example data
data(exp_data)
head(exp_data)
#> outcome treatment confounder Q group_a
#> 748 1.4608165 1 0.26306864 0.6748330 0
#> 221 0.4777308 0 1.30296394 0.5920512 1
#> 24 0.8760129 1 -1.49971226 1.6294327 1
#> 497 0.4131192 1 -1.17219619 -0.8391873 1
#> 249 2.0483222 1 1.71790879 2.9546966 1
#> 547 0.1912013 0 -0.02438458 -0.3704544 0results0 <- cdgd0_pa(Y="outcome",D="treatment",G="group_a",X=c("confounder","Q"),data=exp_data,alpha=0.05)
results0$results
#> names point se CI_lower
#> 1 total 0.267479354808872 0.0389768846815615 0.191086064603441
#> 2 baseline 0.039997497539402 0.0129327144177851 0.0146498430582013
#> 3 prevalence 0.256512539568985 0.0327325145064224 0.192357990012962
#> 4 effect -0.136516278368955 0.0207371744191902 -0.177160393371693
#> 5 selection 0.107485596069441 0.0138872229169067 0.0802671393070242
#> CI_upper
#> 1 0.343872645014304
#> 2 0.0653451520206026
#> 3 0.320667089125008
#> 4 -0.095872163366217
#> 5 0.134704052831857results1 <- cdgd1_pa(Y="outcome",D="treatment",G="group_a",X="confounder",Q="Q",data=exp_data,alpha=0.05)
results1
#> names point se
#> 1 total 0.267479354808872 0.0389768846815615
#> 2 baseline 0.039997497539402 0.0129327144177851
#> 3 conditional prevalence 0.209003240763591 0.0338235692692773
#> 4 conditional effect 0.0661663537818592 0.0778173202907227
#> 5 conditional selection 0.0887548333346887 0.0588644397620432
#> 6 Q distribution -0.136442570610669 0.0726359768772961
#> CI_lower CI_upper
#> 1 0.191086064603441 0.343872645014304
#> 2 0.0146498430582014 0.0653451520206026
#> 3 0.142710263167212 0.27529621835997
#> 4 -0.0863527913613753 0.218685498925094
#> 5 -0.0266173485690436 0.204127015238421
#> 6 -0.278806469272053 0.00592132805071557