Simplify (or "pare") a GeoJSON network ("nx") using raster image skeletonization an Voronoi polygons
Provides functions that use image skeletonization or Voronoi polygons to simplify geographic networks composed of linestrings. The outputs are geographic layers representing simplified or 'primal' representations of the network. Primal networks only contains straight line segments
Sample datasets include:
- Princes Street in Edinburgh, in data/rnet_princes_street.geojson
- Rail lines in Doncaster, in data/rnet_doncaster_rail.geojson
Install the package into an activated python virtual environment with the following command:
pip install parenxInstall the latest development version from GitHub with the following command:
pip install git+https://github.com/anisotropi4/parenx.gitThis places the skeletonization.py and voronoi.py scripts into the executable search path.
Test to see if the package is installed with the following command:
python -c "import parenx; print(parenx.__version__)"A bash helper script run.sh and example data is available under the sitepackages/parenx project directory under venv. The exact path varies with module and python version
# Download the data if not already present
if [ ! -f ./data/rnet_princes_street.geojson ]; then
    wget https://raw.githubusercontent.com/anisotropi4/parenx/main/data/rnet_princes_street.geojson
    # Create data folder if not already present
    if [ ! -d ./data ]; then
        mkdir ./data
    fi
    mv rnet_princes_street.geojson ./data
fiThe following creates a simplified network by applying skeletonization to a buffered raster array in output.gpkg
skeletonize.py ./data/rnet_princes_street.geojson rnet_princes_street_skeletonized.gpkgtile_skeletonize.py ./data/rnet_princes_street.geojson rnet_princes_street_skeletonized_tile.gpkgThe following creates a simplified network by creating set of Voronoi polygons from points on the buffer in output.gpkg
voronoi.py ./data/rnet_princes_street.geojson rnet_princes_street_voronoi.gpkgThe run.sh script sets a python virtual environment and executes the script against a data file in the data directory
$ ./run.sh
The run.sh script optionally takes a filename and file-extension. To simplify a file, say somewhere.geojson and output to GeoPKG files sk-simple.gpkg and vr-simple.gpkg
$ ./run.sh somewhere.geojon simple
To copy the run.sh script into your local directory the following could help
$ find . -name run.sh -exec cp {} . \;
A dash helper script parenx is also available under the sitepackages/parenx project directory under venv. The exact path varies with module and python version
To copy the parenx script into your local directory the following could help
$ find . -name parenx -type f -exec cp {} . \;
The parenx helper script allows the algorithm to be selected as a command line parameter for the three supported algorithms:
./parenx skeletonize ./data/rnet_princes_street.geojson rnet_princes_street_skeltonize.gpkg
./parenx tile_skeletonize ./data/rnet_princes_street.geojson rnet_princes_street_tile.gpkg
./parenx voronoi ./data/rnet_princes_street.geojson rnet_princes_street_voronoi.gpkgThe skeletonize_frame, voronoi_frame, primal_frame and tile_skeletonize_frame functions are exposed via a simple API.
#!/usr/bin/env python3
import geopandas as gp
from parenx import skeletonize_frame, voronoi_frame, skeletonize_tiles, get_primal
CRS = "EPSG:27700"
filepath = "data/rnet_princes_street.geojson"
frame = gp.read_file(filepath).to_crs(CRS)
parameter = {"simplify": 0.0, "buffer": 8.0, "scale": 1.0, "knot": False, "segment": False}
r = skeletonize_frame(frame["geometry"], parameter)
parameter = {"simplify": 0.0, "scale": 5.0, "buffer": 8.0, "tolerance": 1.0}
r = voronoi_frame(frame["geometry"], parameter)
primal = get_primal(r)Both are the skeletonization and Voronoi approach are generic approaches, with the following known issues:
- This does not maintain a link between attributes and the simplified network
- This does not identify a subset of edges that need simplification
- The lines are a bit wobbly
- It is quite slow