full_body_en.mp4
✨ For more results, visit our Project Page ✨
- [2025.07.11] 🔥 The PyTorch model is now available.
- [2025.07.07] 🔥 Ditto is accepted by ACM MM 2025.
- [2025.01.21] 🔥 We update the Colab demo, welcome to try it.
- [2025.01.10] 🔥 We release our inference codes and models.
- [2024.11.29] 🔥 Our paper is in public on arxiv.
Tested Environment
- System: Centos 7.2
- GPU: A100
- Python: 3.10
- tensorRT: 8.6.1
Clone the codes from GitHub:
git clone https://github.com/antgroup/ditto-talkinghead
cd ditto-talkingheadCreate conda environment:
conda env create -f environment.yaml
conda activate dittoIf you have problems creating a conda environment, you can also refer to our Colab.
After correctly installing pytorch, cuda and cudnn, you only need to install a few packages using pip:
pip install \
tensorrt==8.6.1 \
librosa \
tqdm \
filetype \
imageio \
opencv_python_headless \
scikit-image \
cython \
cuda-python \
imageio-ffmpeg \
colored \
polygraphy \
numpy==2.0.1If you don't use conda, you may also need to install ffmpeg according to the official website.
Download checkpoints from HuggingFace and put them in checkpoints dir:
git lfs install
git clone https://huggingface.co/digital-avatar/ditto-talkinghead checkpointsThe checkpoints should be like:
./checkpoints/
├── ditto_cfg
│ ├── v0.4_hubert_cfg_trt.pkl
│ └── v0.4_hubert_cfg_trt_online.pkl
├── ditto_onnx
│ ├── appearance_extractor.onnx
│ ├── blaze_face.onnx
│ ├── decoder.onnx
│ ├── face_mesh.onnx
│ ├── hubert.onnx
│ ├── insightface_det.onnx
│ ├── landmark106.onnx
│ ├── landmark203.onnx
│ ├── libgrid_sample_3d_plugin.so
│ ├── lmdm_v0.4_hubert.onnx
│ ├── motion_extractor.onnx
│ ├── stitch_network.onnx
│ └── warp_network.onnx
└── ditto_trt_Ampere_Plus
├── appearance_extractor_fp16.engine
├── blaze_face_fp16.engine
├── decoder_fp16.engine
├── face_mesh_fp16.engine
├── hubert_fp32.engine
├── insightface_det_fp16.engine
├── landmark106_fp16.engine
├── landmark203_fp16.engine
├── lmdm_v0.4_hubert_fp32.engine
├── motion_extractor_fp32.engine
├── stitch_network_fp16.engine
└── warp_network_fp16.engine
- The
ditto_cfg/v0.4_hubert_cfg_trt_online.pklis online config - The
ditto_cfg/v0.4_hubert_cfg_trt.pklis offline config
Run inference.py:
python inference.py \
--data_root "<path-to-trt-model>" \
--cfg_pkl "<path-to-cfg-pkl>" \
--audio_path "<path-to-input-audio>" \
--source_path "<path-to-input-image>" \
--output_path "<path-to-output-mp4>" For example:
python inference.py \
--data_root "./checkpoints/ditto_trt_Ampere_Plus" \
--cfg_pkl "./checkpoints/ditto_cfg/v0.4_hubert_cfg_trt.pkl" \
--audio_path "./example/audio.wav" \
--source_path "./example/image.png" \
--output_path "./tmp/result.mp4" ❗Note:
We have provided the tensorRT model with hardware-compatibility-level=Ampere_Plus (checkpoints/ditto_trt_Ampere_Plus/). If your GPU does not support it, please execute the cvt_onnx_to_trt.py script to convert from the general onnx model (checkpoints/ditto_onnx/) to the tensorRT model.
python scripts/cvt_onnx_to_trt.py --onnx_dir "./checkpoints/ditto_onnx" --trt_dir "./checkpoints/ditto_trt_custom"Then run inference.py with --data_root=./checkpoints/ditto_trt_custom.
Based on community interest and to better support further development, we are now open-sourcing the PyTorch version of the model.
We have added the PyTorch model and corresponding configuration files to the HuggingFace. Please refer to Download Checkpoints to prepare the model files.
The checkpoints should be like:
./checkpoints/
├── ditto_cfg
│ ├── ...
│ └── v0.4_hubert_cfg_pytorch.pkl
├── ...
└── ditto_pytorch
├── aux_models
│ ├── 2d106det.onnx
│ ├── det_10g.onnx
│ ├── face_landmarker.task
│ ├── hubert_streaming_fix_kv.onnx
│ └── landmark203.onnx
└── models
├── appearance_extractor.pth
├── decoder.pth
├── lmdm_v0.4_hubert.pth
├── motion_extractor.pth
├── stitch_network.pth
└── warp_network.pth
To run inference, execute the following command:
python inference.py \
--data_root "./checkpoints/ditto_pytorch" \
--cfg_pkl "./checkpoints/ditto_cfg/v0.4_hubert_cfg_pytorch.pkl" \
--audio_path "./example/audio.wav" \
--source_path "./example/image.png" \
--output_path "./tmp/result.mp4" Our implementation is based on S2G-MDDiffusion and LivePortrait. Thanks for their remarkable contribution and released code! If we missed any open-source projects or related articles, we would like to complement the acknowledgement of this specific work immediately.
This repository is released under the Apache-2.0 license as found in the LICENSE file.
If you find this codebase useful for your research, please use the following entry.
@article{li2024ditto,
title={Ditto: Motion-Space Diffusion for Controllable Realtime Talking Head Synthesis},
author={Li, Tianqi and Zheng, Ruobing and Yang, Minghui and Chen, Jingdong and Yang, Ming},
journal={arXiv preprint arXiv:2411.19509},
year={2024}
}