Thanks to visit codestin.com
Credit goes to github.com

Skip to content

STA-GANN: A Valid and Generalizable Spatio-Temporal Kriging Approach

License

blisky-li/STAGANN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

STA-GANN: A Valid and Generalizable Spatio-Temporal Kriging Approach

Official repository for the paper:
"STA-GANN: A Valid and Generalizable Spatio-Temporal Kriging Approach"
Accepted at ACM CIKM 2025.

arXiv

📖 Table of Contents


📖 Introduction

Spatio-temporal tasks often encounter incomplete data due to missing or inaccessible sensors, making spatio-temporal kriging crucial for inferring missing temporal information.

However, existing models face challenges in:

  • Capturing dynamic spatial dependencies and temporal shifts,
  • Ensuring validity of spatio-temporal patterns,
  • Optimizing generalizability to unknown sensors.

To address these issues, we propose Spatio-Temporal Aware Graph Adversarial Neural Network (STA-GANN), a novel GNN-based kriging framework that enhances both validity and generalization of spatio-temporal pattern inference.


🔑 Key Contributions

  • Decoupled Phase Module (DPM): Detects and adjusts timestamp shifts.
  • Dynamic Data-Driven Metadata Graph Modeling (D3MGM): Updates spatial relationships using temporal signals and metadata.
  • Adversarial Transfer Learning Strategy: Ensures robust generalization to unseen sensors.

📂 Repository Structure

Our STA-GANN and STKriging implementations are developed based on BasicTS (Dec 2023 release).
We plan to continuously follow the updates of BasicTS to ensure that our framework remains fully aligned with the official version.

The current repository structure is as follows:

├── data_preparation/   # Dataset processing methods
├── datasets/           # Raw data
├── examples/           # Parameters CFG for each dataset and each methods
├── ── {Method}/        # Corresponding method folder
├── ── ── {Method}_{Datasets}.py # Each method and dataset has a CFG py file.
├── stkriging/         # Main Folder
├── ── arch/           # Kriging algorithm
├── ── data/           # Dataset processing related
├── ── loss/           # Define the loss function, redirected from metrics
├── ── metrics/        # metrics
├── ── runners/        # pipeline
├── ── utils/          # Kriging processing related
└── README.md          # Project documentation

🚀 Getting Started

Please install all dependencies via:

pip install -r requirements.txt

Go to examples/run.py, select the method and dataset you need, then run:

python examples/run.py

📊 Datasets

Dataset Domain Sensors Duration Time Steps Frequency Extra Info Data Link
METR-LA Traffic 207 Mar 2012 – Jun 2012 34,272 5 min Includes latitude/longitude; sensor graph; adjacency via Gaussian kernel LINK
PEMS-BAY Traffic 325 Jan 2017 – Jun 2017 52,116 5 min Includes latitude/longitude; sensor graph; adjacency via Gaussian kernel LINK
PEMS03 Traffic 358 Sep 2018 – Nov 2018 26,208 5 min Sensor graph only; no latitude/longitude LINK
PEMS04 Traffic 307 Jan 2018 – Feb 2018 16,992 5 min Sensor graph only; no latitude/longitude LINK
PEMS07 Traffic 883 May 2017 – Aug 2017 28,224 5 min Sensor graph only; no latitude/longitude LINK
PEMS08 Traffic 170 Jul 2016 – Aug 2016 17,856 5 min Sensor graph only; no latitude/longitude LINK
NREL Energy 137 2006 105,120 10 min* Solar power plants in Alabama; includes latitude/longitude LINK
USHCN Climate 1,218 1899 – 2019 1,440 Monthly Precipitation; includes latitude/longitude LINK
AQI Environment 437 43 cities (China) 59,710 Hourly* Air Quality Index (PM2.5); includes latitude/longitude LINK

📌 Data Split

For spatio-temporal kriging experiments, we split the data along two dimensions:

  1. Node Split

    • 7:1:2 ratio
    • 7 parts for known sensors in training
    • 1 part for unknown sensors in validation
    • 2 parts for unknown sensors in test
  2. Series Split

    • 7:3 ratio
    • 7 parts for training
    • 3 parts for validation & test

📚 Baselines

Name Paper Title Venue Year Link Type
GCN Semi-Supervised Classification with Graph Convolutional Networks ICLR 2017 LINK Backbone
GIN How Powerful are Graph Neural Networks? ICLR 2019 LINK Backbone
IGNNK Inductive Graph Neural Networks for Spatiotemporal Kriging AAAI 2021 LINK Spatio-temporal Kriging
GRIN Filling the Gaps: Multivariate Time Series Imputation by Graph Neural Networks ICLR 2022 LINK Adapted Spatio-temporal Imputation
SATCN Spatial Aggregation and Temporal Convolution Networks for Real-time Kriging None 2021 LINK Spatio-temporal Kriging
INCREASE INCREASE: Inductive Graph Representation Learning for Spatio-Temporal Kriging WWW 2023 LINK Spatio-temporal Kriging
DualSTN Decoupling Long- and Short-Term Patterns in Spatiotemporal Inference TNNLS 2023 LINK Spatio-temporal Kriging
IAGCN Inductive and Adaptive Graph Convolution Networks Equipped with Constraint Task for Spatial–Temporal Traffic Data Kriging KBS 2024 LINK Spatio-temporal Kriging
OKriging Traditional Kriging

📜 Citation

arXiv link: http://arxiv.org/abs/2508.16161

The citation:

@article{li2025sta,
  title={STA-GANN: A Valid and Generalizable Spatio-Temporal Kriging Approach},
  author={Li, Yujie and Shao, Zezhi and Yu, Chengqing and Qian, Tangwen and Zhang, Zhao and Du, Yifan and He, Shaoming and Wang, Fei and Xu, Yongjun},
  journal={arXiv preprint arXiv:2508.16161},
  year={2025}
}

🤝 Contact

For any issues, please contact: [email protected]

About

STA-GANN: A Valid and Generalizable Spatio-Temporal Kriging Approach

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages