Thanks to visit codestin.com
Credit goes to github.com

Skip to content

boyang987/imagesc

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

imagesc

Python PyPI Version License Coffee Downloads

  • imagesc is an Python package to create heatmaps. Various methods to create a heatmap are implemented, each with specific properties that can help to easily create your heatmap. The fast and clean method is optimized for speed, the cluster method provides clustering, the seaborn method contains many configuration settings, and finally, the plot as good as possible the imagesc from matlab.

Functions in imagesc

# data is your numpy array
fig = imagesc.seaborn(data)
fig = imagesc.cluster(data)
fig = imagesc.fast(data)
fig = imagesc.clean(data)
fig = imagesc.plot(data)
status = imagesc.savefig(fig)

Contents

Installation

  • Install imagesc from PyPI (recommended). imagesc is compatible with Python 3.6+ and runs on Linux, MacOS X and Windows.
  • It is distributed under the MIT license.

Requirements

# Note that: seaborn is only required when using **seaborn** or **cluster** functions.
pip install numpy pandas matplotlib seaborn
# or
pip install -r requirements.txt

Quick Start

pip install imagesc
  • Alternatively, install imagesc from the GitHub source:
git clone https://github.com/erdogant/imagesc.git
cd imagesc
python setup.py install

Import imagesc package

import imagesc as imagesc

seaborn

df = pd.DataFrame(np.random.randint(0,100,size=(10,20)))
A = imagesc.seaborn(df.values, df.index.values, df.columns.values)
B = imagesc.seaborn(df.values, df.index.values, df.columns.values, annot=True, annot_kws={"size": 12})
C = imagesc.seaborn(df.values, df.index.values, df.columns.values, annot=True, annot_kws={"size": 12}, cmap='rainbow')
D = imagesc.seaborn(df.values, df.index.values, df.columns.values, annot=True, annot_kws={"size": 12}, cmap='rainbow', linecolor='#ffffff')

A B C D

cluster

  • Underlying implemented is based on clustermap
  • When you desire to cluster your heatmap
  • Default distance setting: metric="euclidean", linkage="ward" (can be changed)
  • Slow for large data sets
  • Grid is aligned to the cells
  • Possibilities to tweak
  • Possible arguments: https://seaborn.pydata.org/generated/seaborn.clustermap.html
df = pd.DataFrame(np.random.randint(0,100,size=(10,20)))
fig_C1 = imagesc.cluster(df.values, df.index.values, df.columns.values)
fig_C2 = imagesc.cluster(df.values, df.index.values, df.columns.values, cmap='rainbow')
fig_C3 = imagesc.cluster(df.values, df.index.values, df.columns.values, cmap='rainbow', linecolor='#ffffff')
fig_C4 = imagesc.cluster(df.values, df.index.values, df.columns.values, cmap='rainbow', linecolor='#ffffff', linewidth=0)
imagesc.savefig(fig_C1, './docs/figs/cluster4.png')

C1 C2 C3 C4

fast

df = pd.DataFrame(np.random.randint(0,100,size=(10,20)))
fig_F1 = imagesc.fast(df.values, df.index.values, df.columns.values)
fig_F2 = imagesc.fast(df.values, df.index.values, df.columns.values, grid=False)
fig_F3 = imagesc.fast(df.values, df.index.values, df.columns.values, grid=False, cbar=False)
fig_F4 = imagesc.fast(df.values, df.index.values, df.columns.values, grid=True, cbar=False)
fig_F5 = imagesc.fast(df.values, df.index.values, df.columns.values, cmap='rainbow')
fig_F6 = imagesc.fast(df.values, df.index.values, df.columns.values, cmap='rainbow', linewidth=0.5, grid=True)
imagesc.savefig(fig_C1, './docs/figs/fast1.png')

F1 F2 F3 F4 F5 F6

clean

df = pd.DataFrame(np.random.randint(0,100,size=(10,20)))
fig_FC1 = imagesc.clean(df.values)
fig_FC2 = imagesc.clean(df.values, cmap='rainbow')
imagesc.savefig(fig_C1, './docs/figs/clean1.png')

F1 F2

plot

df = pd.DataFrame(np.random.randint(0,100,size=(10,20)))
fig_M1 = imagesc.plot(df.values)
fig_M2 = imagesc.plot(df.values, cbar=False)
fig_M3 = imagesc.plot(df.values, cbar=False, axis=False)
fig_M4 = imagesc.plot(df.values, cbar=False, axis=True, linewidth=0.2)
fig_M5 = imagesc.plot(df.values, df.index.values, df.columns.values)
fig_M6 = imagesc.plot(df.values, df.index.values, df.columns.values, cbar=False, linewidth=0.2)
fig_M7 = imagesc.plot(df.values, df.index.values, df.columns.values, grid=True, cbar=False, linewidth=0.2)
fig_M8 = imagesc.plot(df.values, df.index.values, df.columns.values, grid=False, cbar=False, linewidth=0.2)
fig_M9 = imagesc.plot(df.values, df.index.values, df.columns.values, grid=True, cbar=False, linewidth=0.8, linecolor='#ffffff')
fig_M10 = imagesc.plot(df.values, df.index.values, df.columns.values, grid=True, cbar=False, linewidth=0.8, linecolor='#ffffff', cmap='rainbow')
imagesc.savefig(fig, './docs/figs/plot10.png')imagesc.savefig(fig_C1, './docs/figs/fast1.png')

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Speed:

import matplotlib.image as mpimg
img=mpimg.imread('./docs/figs/lenna.png')

fig = imagesc.clean(img)
# runtime 1.49

fig = imagesc.fast(img, cbar=False, axis=False)
# runtime: 2.931 seconds

fig = imagesc.plot(img, linewidth=0, cbar=False)
# runtime: 11.042

**fast** **clean** **plot**

Citation

Please cite imagesc in your publications if this is useful for your research. Here is an example BibTeX entry:

@misc{erdogant2019imagesc,
  title={imagesc},
  author={Erdogan Taskesen},
  year={2019},
  howpublished={\url{https://github.com/erdogant/imagesc}},
}

References

Maintainer

  • Erdogan Taskesen, github: erdogant
  • Contributions are welcome.
  • If you wish to buy me a Coffee for this work, it is very appreciated :)

About

imagesc is an python package to create heatmaps

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 98.7%
  • Shell 1.3%