"结巴"中文分词:做最好的Python中文分词组件 "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.
- Scroll down for English documentation.
-
支持三种分词模式:
- 精确模式,试图将句子最精确地切开,适合文本分析;
- 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
- 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
-
支持繁体分词
-
支持自定义词典
http://jiebademo.ap01.aws.af.cm/
(Powered by Appfog)
- 目前master分支是只支持Python2.x 的
- Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k
- 全自动安装:
easy_install jieba或者pip install jieba - 半自动安装:先下载http://pypi.python.org/pypi/jieba/ ,解压后运行python setup.py install
- 手动安装:将jieba目录放置于当前目录或者site-packages目录
- 通过import jieba 来引用 (第一次import时需要构建Trie树,需要几秒时间)
- 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG)
- 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
- 对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法
jieba.cut方法接受两个输入参数: 1) 第一个参数为需要分词的字符串 2)cut_all参数用来控制是否采用全模式jieba.cut_for_search方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细- 注意:待分词的字符串可以是gbk字符串、utf-8字符串或者unicode
jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(...))转化为list
代码示例( 分词 )
#encoding=utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学",cut_all=True)
print "Full Mode:", "/ ".join(seg_list) #全模式
seg_list = jieba.cut("我来到北京清华大学",cut_all=False)
print "Default Mode:", "/ ".join(seg_list) #精确模式
seg_list = jieba.cut("他来到了网易杭研大厦") #默认是精确模式
print ", ".join(seg_list)
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") #搜索引擎模式
print ", ".join(seg_list)
Output:
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
【精确模式】: 我/ 来到/ 北京/ 清华大学
【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
-
开发者可以指定自己自定义的词典,以便包含jieba词库里没有的词。虽然jieba有新词识别能力,但是自行添加新词可以保证更高的正确率
-
用法: jieba.load_userdict(file_name) # file_name为自定义词典的路径
-
词典格式和
dict.txt一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开 -
范例:
-
自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt
-
用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py
-
之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
-
加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
-
-
-
"通过用户自定义词典来增强歧义纠错能力" --- fxsjy#14
- jieba.analyse.extract_tags(sentence,topK) #需要先import jieba.analyse
- setence为待提取的文本
- topK为返回几个TF/IDF权重最大的关键词,默认值为20
代码示例 (关键词提取)
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
-
标注句子分词后每个词的词性,采用和ictclas兼容的标记法
-
用法示例
>>> import jieba.posseg as pseg >>> words =pseg.cut("我爱北京天安门") >>> for w in words: ... print w.word,w.flag ... 我 r 爱 v 北京 ns 天安门 ns
-
占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small
-
支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big
下载你所需要的词典,然后覆盖jieba/dict.txt 即可。
- 1.5 MB / Second in Full Mode
- 400 KB / Second in Default Mode
- Test Env: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt
1)模型的数据是如何生成的?fxsjy#7
2)这个库的授权是? fxsjy#2
更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed
http://www.oschina.net/p/jieba/news#list
"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.
- Support three types of segmentation mode:
-
- Accurate Mode, attempt to cut the sentence into the most accurate segmentation, which is suitable for text analysis;
-
- Full Mode, break the words of the sentence into words scanned
-
- Search Engine Mode, based on the Accurate Mode, with an attempt to cut the long words into several short words, which can enhance the recall rate
- Fully automatic installation:
easy_install jiebaorpip install jieba - Semi-automatic installation: Download http://pypi.python.org/pypi/jieba/ , after extracting run
python setup.py install - Manutal installation: place the
jiebadirectory in the current directory or python site-packages directory. - Use
import jiebato import, which will first build the Trie tree only on first import (takes a few seconds).
- Based on the Trie tree structure to achieve efficient word graph scanning; sentences using Chinese characters constitute a directed acyclic graph (DAG)
- Employs memory search to calculate the maximum probability path, in order to identify the maximum tangential points based on word frequency combination
- For unknown words, the character position HMM-based model is used, using the Viterbi algorithm
- The
jieba.cutmethod accepts to input parameters: 1) the first parameter is the string that requires segmentation, and the 2) second parameter iscut_all, a parameter used to control the segmentation pattern. jieba.cutreturned structure is an iterative generator, where you can use aforloop to get the word segmentation (in unicode), orlist(jieba.cut( ... ))to create a list.jieba.cut_for_searchaccpets only on parameter: the string that requires segmentation, and it will cut the sentence into short words
#encoding=utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学",cut_all=True)
print "Full Mode:", "/ ".join(seg_list) #全模式
seg_list = jieba.cut("我来到北京清华大学",cut_all=False)
print "Default Mode:", "/ ".join(seg_list) #默认模式
seg_list = jieba.cut("他来到了网易杭研大厦")
print ", ".join(seg_list)
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") #搜索引擎模式
print ", ".join(seg_list)
Output:
[Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
[Accurate Mode]: 我/ 来到/ 北京/ 清华大学
[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)
[Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在
, 日本, 京都, 大学, 日本京都大学, 深造
-
Developers can specify their own custom dictionary to include in the jieba thesaurus. jieba has the ability to identify new words, but adding your own new words can ensure a higher rate of correct segmentation.
-
Usage:
jieba.load_userdict(file_name) # file_name is a custom dictionary path -
The dictionary format is the same as that of
analyse/idf.txt: one word per line; each line is divided into two parts, the first is the word itself, the other is the word frequency, separated by a space -
Example:
云计算 5 李小福 2 创新办 3 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
jieba.analyse.extract_tags(sentence,topK) # needs to first import jieba.analysesetence: the text to be extractedtopK: To return several TF / IDF weights for the biggest keywords, the default value is 20
Code sample (keyword extraction)
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
- 1.5 MB / Second in Full Mode
- 400 KB / Second in Default Mode
- Test Env: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt
http://jiebademo.ap01.aws.af.cm/
(Powered by Appfog)