Thanks to visit codestin.com
Credit goes to github.com

Skip to content

[🧠] Platform is a Bittensor subnet built to advance collaborative AI research through multiple simultaneous challenges powered by sub-subnet technology. It enables miners to compete and cooperate across diverse challenges, ensuring confidentiality, transparent evaluation, and the continuous pursuit of the most efficient and innovative code.

License

Notifications You must be signed in to change notification settings

cuteolaf/platform

 
 

Repository files navigation

ρlατfοrm

Distributed validator network for decentralized AI evaluation on Bittensor

CI Coverage License GitHub stars Rust

Platform Banner

Alt


Introduction

Platform is a decentralized evaluation framework that enables trustless assessment of miner submissions through configurable challenges on the Bittensor network. By connecting multiple validators through a Byzantine fault-tolerant consensus mechanism, Platform ensures honest and reproducible evaluation while preventing gaming and manipulation.

Want to run a validator? See the Validator Guide for setup instructions.

Key Features

  • Decentralized Evaluation: Multiple validators independently evaluate submissions
  • Challenge-Based Architecture: Modular Docker containers define custom evaluation logic
  • Byzantine Fault Tolerance: PBFT consensus with $2f+1$ threshold ensures correctness
  • Secure Weight Submission: Weights submitted to Bittensor at epoch boundaries
  • Merkle State Sync: Verifiable distributed database with optimistic execution
  • Multi-Mechanism Support: Each challenge maps to a Bittensor mechanism for independent weight setting
  • Stake-Weighted Security: Minimum 1000 TAO stake required for validator participation

System Overview

Platform involves three main participants:

  • Miners: Submit code/models to challenges for evaluation
  • Validators: Run challenge containers, evaluate submissions, and submit weights to Bittensor
  • Sudo Owner: Configures challenges via signed SudoAction messages

The coordination between validators ensures that only verified, consensus-validated results influence the weight distribution on Bittensor.

┌─────────────────────────────────────────────────────────────────────────────┐
│                              SUDO OWNER                                     │
│                    (Creates, Updates, Removes Challenges)                   │
└─────────────────────────────────┬───────────────────────────────────────────┘
                                  │
                                  ▼
┌─────────────────────────────────────────────────────────────────────────────┐
│                         SHARED BLOCKCHAIN STATE                             │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐         │
│  │ Challenge A │  │ Challenge B │  │ Challenge C │  │     ...     │         │
│  │ (Docker)    │  │ (Docker)    │  │ (Docker)    │  │             │         │
│  └─────────────┘  └─────────────┘  └─────────────┘  └─────────────┘         │
│                                                                             │
│  ┌───────────────────────────────────────────────────────────────────────┐  │
│  │                     Distributed Database (Merkle Trie)                │  │
│  │              Evaluation Results • Scores • Agent Data                 │  │
│  └───────────────────────────────────────────────────────────────────────┘  │
└─────────────────────────────────┬───────────────────────────────────────────┘
                                  │
            ┌─────────────────────┼─────────────────────┐
            │                     │                     │
            ▼                     ▼                     ▼
┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐
│   VALIDATOR 1     │ │   VALIDATOR 2     │ │   VALIDATOR N     │
├───────────────────┤ ├───────────────────┤ ├───────────────────┤
│ ┌───────────────┐ │ │ ┌───────────────┐ │ │ ┌───────────────┐ │
│ │ Challenge A   │ │ │ │ Challenge A   │ │ │ │ Challenge A   │ │
│ │ Challenge B   │ │ │ │ Challenge B   │ │ │ │ Challenge B   │ │
│ │ Challenge C   │ │ │ │ Challenge C   │ │ │ │ Challenge C   │ │
│ └───────────────┘ │ │ └───────────────┘ │ │ └───────────────┘ │
│                   │ │                   │ │                   │
│ Evaluates miners  │ │ Evaluates miners  │ │ Evaluates miners  │
│ Shares results    │ │ Shares results    │ │ Shares results    │
└─────────┬─────────┘ └─────────┬─────────┘ └─────────┬─────────┘
          │                     │                     │
          └─────────────────────┼─────────────────────┘
                                │
                                ▼
                    ┌───────────────────────┐
                    │   BITTENSOR CHAIN     │
                    │   (Weight Submission) │
                    │  Each Epoch (~72min)  │
                    └───────────────────────┘

Miners

Operations

  1. Development:

    • Miners develop solutions that solve challenge-specific tasks
    • Solutions are packaged as code submissions with metadata
  2. Submission:

    • Submit to any validator via HTTP API
    • Submission is stored in distributed database and synced across all validators
    • Submission includes: source code, miner hotkey, metadata
  3. Evaluation:

    • All validators independently evaluate the submission
    • Evaluation runs in isolated Docker containers (challenge-specific logic)
    • Results are stored in Merkle-verified distributed database
  4. Weight Distribution:

    • At epoch end, validators aggregate scores
    • Weights are submitted to Bittensor proportional to miner performance

Formal Definitions

  • Submission: $S_i = (code, hotkey_i, metadata)$
  • Submission Hash: $h_i = \text{SHA256}(S_i)$
  • Evaluation Score: $s_i^v \in [0, 1]$ - score from validator $v$ for submission $i$

Validators

Operations

  1. Challenge Synchronization:

    • Pull challenge Docker images configured by Sudo owner
    • All validators run identical challenge containers
    • Health monitoring ensures container availability
  2. Submission Evaluation:

    • Receive submissions via P2P gossipsub
    • Execute evaluation in sandboxed Docker environment
    • Compute score $s \in [0, 1]$ based on challenge criteria
  3. Result Sharing:

    • Broadcast EvaluationResult to all peers via P2P
    • Store results in distributed Merkle-verified database
    • Verify state root matches across validators
  4. Score Aggregation:

    • Collect evaluations from all validators for each submission
    • Compute stake-weighted average to aggregate scores
    • Detect and exclude outlier validators (2σ threshold)
  5. Weight Calculation:

    • Convert aggregated scores to normalized weights
    • Apply softmax or linear normalization
  6. Weight Submission:

    • Submit weights to Bittensor per-mechanism at epoch boundaries

Formal Definitions

  • Evaluation: $E_i^v = (h_i, s_i^v, t, sig_v)$ where $sig_v$ is validator signature
  • Aggregated Score (stake-weighted mean, after outlier removal):

$$\bar{s}_i = \frac{\sum_{v \in \mathcal{V}'} S_v \cdot s_i^v}{\sum_{v \in \mathcal{V}'} S_v}$$

Where $\mathcal{V}'$ is the set of validators after outlier removal and $S_v$ is the stake of validator $v$

  • Confidence Score:

$$c_i = \exp\left( -\frac{\sigma_i}{\tau} \right)$$

Where $\sigma_i$ is standard deviation of scores and $\tau$ is sensitivity scale.


Incentive Mechanism

Weight Calculation

Platform supports two normalization methods:

1. Softmax Normalization (Default)

Converts scores to probability distribution using temperature-scaled softmax:

$$w_i = \frac{\exp(s_i / T)}{\sum_{j \in \mathcal{M}} \exp(s_j / T)}$$

Where:

  • $w_i$ - normalized weight for submission $i$
  • $s_i$ - aggregated score for submission $i$
  • $T$ - temperature parameter (higher = more distributed)
  • $\mathcal{M}$ - set of all evaluated submissions

2. Linear Normalization

Simple proportional distribution:

$$w_i = \frac{s_i}{\sum_{j \in \mathcal{M}} s_j}$$

Final Weight Conversion

Weights are converted to Bittensor u16 format:

$$W_i = \lfloor w_i' \times 65535 \rfloor$$


Consensus Mechanism

PBFT (Practical Byzantine Fault Tolerance)

Platform uses simplified PBFT for validator consensus:

Threshold

For $n$ validators with maximum $f$ faulty nodes:

$$\text{threshold} = 2f + 1 = \left\lfloor \frac{2n}{3} \right\rfloor + 1$$

Consensus Flow

  1. Propose: Leader broadcasts Proposal(action, block_height)
  2. Vote: Validators verify and broadcast Vote(proposal_id, approve/reject)
  3. Commit: If $\geq \text{threshold}$ approvals received, apply action

Supported Actions

  • SudoAction::AddChallenge - Add new challenge container
  • SudoAction::UpdateChallenge - Update challenge configuration
  • SudoAction::RemoveChallenge - Remove challenge
  • SudoAction::SetRequiredVersion - Mandatory version update
  • NewBlock - State checkpoint

Distributed Database Consensus

State synchronization uses Merkle trie verification:

StateRoot = MerkleRoot({(k_i, v_i) : ∀ entries})

Validators periodically compare state roots:

  • In Consensus: $\geq 2/3$ validators share same root
  • Diverged: Minority validators must sync from majority

Score Aggregation

Stake-Weighted Aggregation

Each validator's score is weighted by their stake:

$$\bar{s}_i = \frac{\sum_{v \in \mathcal{V}} S_v \cdot s_i^v}{\sum_{v \in \mathcal{V}} S_v}$$

Where $S_v$ is the stake of validator $v$.

Outlier Detection

Validators with anomalous scores are detected using z-score:

$$z_v = \frac{s_i^v - \mu_i}{\sigma_i}$$

Where $\mu_i$ and $\sigma_i$ are mean and standard deviation of scores for submission $i$.

Validators with $|z_v| > z_{threshold}$ (default 2.0) are excluded from aggregation.

Confidence Calculation

Agreement among validators determines confidence:

$$\text{confidence}_i = \exp\left( -\frac{\sigma_i}{0.1} \right)$$

Low confidence (high variance) may exclude submission from weights.


Security Considerations

Stake-Based Security

  • Minimum Stake: 1000 TAO required for validator participation
  • Sybil Resistance: Creating fake validators requires significant capital
  • Stake Validation: All P2P messages verified against metagraph stakes

Network Protection

Protection Configuration
Rate Limiting 100 msg/sec per peer
Connection Limiting 5 connections per IP
Blacklist Duration 1 hour for violations
Failed Attempt Limit 10 before blacklist

Evaluation Isolation

  • Docker Sandboxing: Agents run in isolated containers
  • Resource Limits: Memory, CPU, and time constraints
  • Deterministic Execution: All validators run identical containers

Data Integrity

  • Merkle Verification: All data changes update state root
  • Signature Verification: All messages signed by validator keys
  • Optimistic Execution: Immediate local apply, confirmed at block

Formal Analysis

Miner Utility Maximization

Miners maximize reward by submitting high-performing solutions:

$$\max_{S_i} \quad w_i = \frac{\exp(\bar{s}_i / T)}{\sum_j \exp(\bar{s}_j / T)}$$

Subject to:

  • Submission must pass validation
  • Score determined by challenge criteria

Security Guarantees

  1. Byzantine Tolerance: System remains correct with up to $f = \lfloor(n-1)/3\rfloor$ faulty validators

  2. Evaluation Fairness:

    • Deterministic Docker execution
    • Outlier detection excludes manipulators
    • Stake weighting resists Sybil attacks
  3. Liveness: System progresses if $> 2/3$ validators are honest and connected


Epoch Lifecycle

Each Bittensor epoch (~360 blocks, ~72 minutes):

Continuous Evaluation

Evaluation runs continuously throughout the entire epoch. Validators constantly:

  • Receive and process submissions from challenges
  • Execute evaluations in Docker containers
  • Sync results via P2P to distributed database
  • Aggregate scores from all validators

Weight Submission

At the end of each epoch, validators submit weights to Bittensor based on aggregated scores.


Quick Start

git clone https://github.com/PlatformNetwork/platform.git
cd platform
cp .env.example .env
# Edit .env: add your VALIDATOR_SECRET_KEY (BIP39 mnemonic)
docker compose up -d

The validator will auto-connect to bootnode.platform.network and sync.

Hardware Requirements

Resource Minimum Recommended
CPU 4 vCPU 8 vCPU
RAM 16 GB 32 GB
Storage 250 GB SSD 500 GB NVMe
Network 100 Mbps 100 Mbps

Note: Hardware requirements may increase over time as more challenges are added to the network. Each challenge runs in its own Docker container and may have specific resource needs. Monitor your validator's resource usage and scale accordingly.

Network Requirements

Port 9000/tcp must be open for P2P communication.

Port Protocol Usage
9000/tcp P2P (libp2p) Validator communication (required)
8545/tcp HTTP JSON-RPC API (optional)

Configuration

Variable Description Default
VALIDATOR_SECRET_KEY BIP39 mnemonic or hex key Required
SUBTENSOR_ENDPOINT Bittensor RPC endpoint wss://entrypoint-finney.opentensor.ai:443
NETUID Subnet UID 100
RUST_LOG Log level info

Auto-Update (Critical)

All validators MUST use auto-update. Watchtower checks for new images at synchronized times (:00, :05, :10, :15...) so all validators update together.

If validators run different versions:

  • Consensus fails (state hash mismatch)
  • Weight submissions rejected
  • Network forks

Do not disable Watchtower.


Conclusion

Platform creates a trustless, decentralized framework for evaluating miner submissions on Bittensor. By combining:

  • PBFT Consensus for Byzantine fault tolerance
  • Stake-Weighted Aggregation for Sybil resistance
  • Docker Isolation for deterministic evaluation (challenge-specific logic)
  • Merkle State Sync for verifiable distributed storage

The system ensures that only genuine, high-performing submissions receive rewards, while making manipulation economically infeasible. Validators are incentivized to provide accurate evaluations through reputation mechanics, and miners are incentivized to submit quality solutions through the weight distribution mechanism.


License

MIT

About

[🧠] Platform is a Bittensor subnet built to advance collaborative AI research through multiple simultaneous challenges powered by sub-subnet technology. It enables miners to compete and cooperate across diverse challenges, ensuring confidentiality, transparent evaluation, and the continuous pursuit of the most efficient and innovative code.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Rust 99.4%
  • Other 0.6%