An extensible, event-driven wrapper over PostgreSQL with integrated AI capabilities for enhanced database design, querying, and maintenance.
graph TD
A[Client Application] -->|Standard Postgres Connection| D[PostgreSQL Database]
A -->|API Requests| B[API Layer]
B <--> C[AI Layer]
C -->|SQL Queries| D
C -->|Log Events| E[Event Store]
F[LLM Core] <-->|Central Processing| C
G[RAG System] <-->|Enhance Queries| C
G -->|Query Metadata| E
G -->|Query App Data| D
H[Neural Query Optimizer] <-->|Optimize| C
I[Anomaly Detection AI] <-->|Monitor| C
J[AutoML for Indexing] <-->|Suggest Indexes| C
K[Graph Neural Network] <-->|Analyze Relations| C
L[Time Series Forecasting] <-->|Predict Trends| C
M[Development Tools] -->|Integrate| B
N[Monitoring/Analytics] -->|Track| E
N -->|Feed Performance Data| G
G -->|Provide Insights| C
- Dual Connectivity: Use as a standard PostgreSQL database or leverage AI-enhanced features through our API.
- LLM-Powered AI Layer: Natural language query understanding, intelligent schema recommendations, and more.
- RAG System: Enhances AI capabilities with context from both application data and metadata.
- Neural Query Optimizer: Deep learning-based query optimization that goes beyond traditional rule-based optimizers.
- Anomaly Detection: Real-time monitoring for security issues, data inconsistencies, and performance problems.
- AutoML for Indexing: Automated index recommendations and testing for optimal performance.
- Graph Neural Network: Analyzes data relationships to enhance schema design and query optimization.
- Time Series Forecasting: Predicts future trends in data and query patterns for proactive optimization.
- Comprehensive Monitoring: Analytics feed back into the AI layer for continuous improvement.
- PostgreSQL 13 or higher
- Python 3.8+
- Docker (optional, for containerized deployment)
-
Clone the repository:
git clone https://github.com/your-username/ai-driven-database.git cd ai-driven-database -
Install dependencies:
pip install -r requirements.txt -
Set up your PostgreSQL database and update the configuration in
config.yaml. -
Initialize the AI-driven wrapper:
python init_ai_wrapper.py -
Start the service:
python run_server.py
Connect to the database using your preferred PostgreSQL client or ORM as usual.
Use our REST API to leverage AI-driven features:
import requests
response = requests.post('http://localhost:8000/api/v1/query', json={
'natural_language_query': 'Find all high-value customers from the last month'
})
print(response.json())We welcome contributions! Please see our Contributing Guide for more details.
This project is licensed under the MIT License - see the LICENSE file for details.
- PostgreSQL
- OpenAI for LLM technology
- All our amazing contributors!