Object Detection application right in your browser. Serving YOLOv8 in browser using tensorflow.js
with webgl backend.
Setup
git clone https://github.com/Hyuto/yolov8-tfjs.git
cd yolov8-tfjs
yarn install #Install dependenciesScripts
yarn start # Start dev server
yarn build # Build for productionsYOLOv8n model converted to tensorflow.js.
used model : yolov8n
size : 13 Mb
Use another model
Use another YOLOv8 model.
-
Export YOLOv8 model to tfjs format. Read more on the official documentation
from ultralytics import YOLO # Load a model model = YOLO("yolov8n.pt") # load an official model # Export the model model.export(format="tfjs")
-
Copy
yolov8*_web_modelto./public -
Update
modelNameinApp.jsxto new model name... // model configs const modelName = "yolov8*"; // change to new model name ...
-
Done! 😊
Note: Custom Trained YOLOv8 Models
Please update src/utils/labels.json with your new classes.