A comprehensive Model Context Protocol (MCP) server that provides tools for interacting with Comet ML API. This server enables seamless integration with Comet ML's experiment tracking platform through a standardized protocol.
- 🔧 MCP Server: Full Model Context Protocol implementation for tool integration
- 📊 Experiment Management: List, search, and analyze experiments with detailed metrics
- 📁 Project Management: Organize and explore projects across workspaces
- 🔍 Advanced Search: Search experiments by name, description, and project
- 📈 Session Management: Singleton
comet_ml.API()instance with robust error handling
- Python 3.8 or higher
- Comet ML account and API key
pip install comet-mcp --upgradeYou can run the Comet MCP server using Docker to avoid installing Python dependencies on your system.
-
Build the Docker image:
docker build -t comet-mcp . -
Configure your MCP client (see Usage section below for configuration examples)
The server uses standard comet_ml configuration:
- Using
comet init; or - Using environment variables
Example:
export COMET_API_KEY=your_comet_api_key_here
# Optional: Set default workspace (if not provided, uses your default)
export COMET_WORKSPACE=your_workspace_namelist_experiments(workspace, project_name)- List recent experiments with optional filteringget_experiment_details(experiment_id)- Get comprehensive experiment information including metrics and parametersget_experiment_code(experiment_id)- Retrieve source code from experimentsget_experiment_metric_data(experiment_ids, metric_names, x_axis)- Get metric data for multiple experimentsget_default_workspace()- Get the default workspace name for the current userlist_projects(workspace)- List all projects in a workspacelist_project_experiments(project_name, workspace)- List experiments within a specific projectcount_project_experiments(project_name, workspace)- Count and analyze experiments in a projectget_session_info()- Get current session status and connection information
- Structured Data: All tools return properly typed data structures
- Error Handling: Graceful handling of API failures and missing data
- Flexible Filtering: Filter by workspace, project, or search terms
- Rich Metadata: Includes timestamps, descriptions, and status information
Run the server to provide tools to MCP clients:
# Start the MCP server
comet-mcpThe server will:
- Initialize Comet ML session
- Register all available tools
- Listen for MCP client connections via stdio
Create a configuration for your AI system. For example:
Local Installation:
{
"servers": [
{
"name": "comet-mcp",
"description": "Comet ML MCP server for experiment management",
"command": "comet-mcp",
"env": {
"COMET_API_KEY": "${COMET_API_KEY}"
}
}
]
}Docker Installation (Alternative):
{
"mcpServers": {
"comet-mcp": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"COMET_API_KEY",
"-e",
"COMET_WORKSPACE",
"comet-mcp",
"comet-mcp",
"--transport",
"stdio"
],
"env": {
"COMET_API_KEY": "your_api_key_here",
"COMET_WORKSPACE": "your_workspace_name"
}
}
}
}comet-mcp supports "stdio" and "sse" transport modes.
usage: comet-mcp [-h] [--transport {stdio,sse}] [--host HOST] [--port PORT]
Comet ML MCP Server
options:
-h, --help show this help message and exit
--transport {stdio,sse}
Transport method to use (default: stdio)
--host HOST Host for SSE transport (default: localhost)
--port PORT Port for SSE transport (default: 8000)
For complete details on testing this (or any MCP server) see examples/README.
This project is licensed under the MIT License - see the LICENSE file for details.
- Documentation: GitHub Repository
- Issues: GitHub Issues
- Comet ML: Comet ML Documentation