This package aims to provide a Boost.Python-like wrapping for C++ types and functions to Julia. The idea is to write the code for the Julia wrapper in C++, and then use a one-liner on the Julia side to make the wrapped C++ library available there.
The mechanism behind this package is that functions and types are registered in C++ code that is compiled into a dynamic library. This dynamic library is then loaded into Julia, where the Julia part of this package uses the data provided through a C interface to generate functions accessible from Julia. The functions are passed to Julia either as raw function pointers (for regular C++ functions that don't need argument or return type conversion) or std::functions (for lambda expressions and automatic conversion of arguments and return types). The Julia side of this package wraps all this into Julia methods automatically.
With Cxx.jl it is possible to directly access C++ using the @cxx macro from Julia. So when facing the task of wrapping a C++ library in a Julia package, authors now have 2 options:
- Use Cxx.jl to write the wrapper package in Julia code (much like one uses
ccallfor wrapping a C library) - Use CxxWrap to write the wrapper completely in C++ (and one line of Julia code to load the .so)
Boost.Python also uses the latter (C++-only) approach, so translating existing Python bindings based on Boost.Python may be easier using CxxWrap.
- Support for C++ functions, member functions and lambdas
- Classes with single inheritance, using abstract base classes on the Julia side
- Trivial C++ classes can be converted to a Julia isbits immutable
- Template classes map to parametric types, for the instantiations listed in the wrapper
- Automatic wrapping of default and copy constructor (mapped to deepcopy) if defined on the wrapped C++ class
- Facilitate calling Julia functions from C++
Just like any registered package:
Pkg.add("CxxWrap")To build on Windows, you need to set the BUILD_ON_WINDOWS environment variable to "1" in order to avoid the automatic binary download. The build prerequisites are:
- Cmake in the path
- Latest version of Visual Studio (Visual Studio 2015 Update 2 RC with MSVC 19.0.23824.1, it won't work on older versions due to internal compiler errors)
Let's try to reproduce the example from the Boost.Python tutorial. Suppose we want to expose the following C++ function to Julia in a module called CppHello:
std::string greet()
{
return "hello, world";
}Using the C++ side of CxxWrap, this can be exposed as follows:
#include <cxx_wrap.hpp>
JULIA_CPP_MODULE_BEGIN(registry)
cxx_wrap::Module& hello = registry.create_module("CppHello");
hello.method("greet", &greet);
JULIA_CPP_MODULE_ENDOnce this code is compiled into a shared library (say libhello.so) it can be used in Julia as follows:
using CxxWrap
# Load the module and generate the functions
wrap_modules(joinpath("path/to/built/lib","libhello"))
# Call greet and show the result
@show CppHello.greet()The code for this example can be found in deps/src/examples/hello.cpp and test/hello.jl.
Julia symbols can be exported from the module using the export_symbols function on the C++ side. It takes any number of symbols as string. To export greet from the CppHello module:
hello.export_symbols("greet");A more extensive example, including wrapping a C++11 lambda and conversion for arrays can be found in deps/src/examples/functions.cpp and test/functions.jl. This test also includes some performance measurements, showing that the function call overhead is the same as using ccall on a C function if the C++ function is a regular function and does not require argument conversion. When std::function is used (e.g. for C++ lambdas) extra overhead appears, as expected.
Consider the following C++ class to be wrapped:
struct World
{
World(const std::string& message = "default hello") : msg(message){}
void set(const std::string& msg) { this->msg = msg; }
std::string greet() { return msg; }
std::string msg;
~World() { std::cout << "Destroying World with message " << msg << std::endl; }
};Wrapped in the JULIA_CPP_MODULE_BEGIN/END block as before and defining a module CppTypes, the code for exposing the type and some methods to Julia is:
types.add_type<World>("World")
.constructor<const std::string&>()
.method("set", &World::set)
.method("greet", &World::greet);Here, the first line just adds the type. The second line adds the non-default constructor taking a string. Finally, the two method calls add member functions, using a pointer-to-member. The member functions become free functions in Julia, taking their object as the first argument. This can now be used in Julia as
w = CppTypes.World()
@test CppTypes.greet(w) == "default hello"
CppTypes.set(w, "hello")
@test CppTypes.greet(w) == "hello"Warning: The ordering of the C++ code matters: types used as function arguments or return types must be added before they are used in a function.
The full code for this example and more info on immutables and bits types can be found in deps/src/examples/types.cpp and test/types.jl.
Enum types are converted to strongly-typed bits types on the Julia side. Consider the C++ enum:
enum CppEnum
{
EnumValA,
EnumValB
};This is registered as follows:
namespace cxx_wrap
{
template<> struct IsBits<CppEnum> : std::true_type {};
}
JULIA_CPP_MODULE_BEGIN(registry)
cxx_wrap::Module& types = registry.create_module("CppTypes");
types.add_bits<CppEnum>("CppEnum");
types.set_const("EnumValA", EnumValA);
types.set_const("EnumValB", EnumValB);
JULIA_CPP_MODULE_ENDThe enum constants will be available on the Julia side as CppTypes.EnumValA and CppTypes.EnumValB, both of type CppTypes.CppEnum. Wrapped C++ functions taking a CppEnum will only accept a value of type CppTypes.CppEnum in Julia.
See the test at deps/src/examples/inheritance.cpp and test/inheritance.jl.
The natural Julia equivalent of a C++ template class is the parametric type. The mapping is complicated by the fact that all possible parameter values must be compiled in advance, requiring a deviation from the syntax for adding a regular class. Consider the following template class:
template<typename A, typename B>
struct TemplateType
{
typedef typename A::val_type first_val_type;
typedef typename B::val_type second_val_type;
first_val_type get_first()
{
return A::value();
}
second_val_type get_second()
{
return B::value();
}
};The code for wrapping this is:
types.add_type<Parametric<TypeVar<1>, TypeVar<2>>>("TemplateType")
.apply<TemplateType<P1,P2>, TemplateType<P2,P1>>([](auto wrapped)
{
typedef typename decltype(wrapped)::type WrappedT;
wrapped.method("get_first", &WrappedT::get_first);
wrapped.method("get_second", &WrappedT::get_second);
});The first line adds the parametric type, using the generic placeholder Parametric and a TypeVar for each parameter. On the second line, the possible instantiations are created by calling apply on the result of add_type. Here, we allow for TemplateType<P1,P2> and TemplateType<P2,P1> to exist, where P1 and P2 are C++ classes that also must be wrapped and that fulfill the requirements for being a parameter to TemplateType. The argument to apply is a functor (generic C++14 lambda here) that takes the wrapped instantiated type (called wrapped here) as argument. This object can then be used as before to define methods. In the case of a generic lambda, the actual type being wrapped can be obtained using decltype as shown on the 4th line.
Use on the Julia side:
import ParametricTypes.TemplateType, ParametricTypes.P1, ParametricTypes.P2
p1 = TemplateType{P1, P2}()
p2 = TemplateType{P2, P1}()
@test ParametricTypes.get_first(p1) == 1
@test ParametricTypes.get_second(p2) == 1Full example and test including non-type parameters at: deps/src/examples/parametric.cpp and test/parametric.jl.
The default constructor and any manually added constructor using the constructor function will automatically create a Julia object that has a finalizer attached that calls delete to free the memory. To write a C++ function that returns a new object that can be garbage-collected in Julia, use the cxx_wrap::create function:
cxx_wrap::create<Class>(constructor_arg1, ...);This will return the new C++ object wrapped in a jl_value_t* that has a finalizer.
Since Julia supports overloading the function call operator (), this can be used to wrap operator() by just omitting the method name:
struct CallOperator
{
int operator()() const
{
return 43;
}
};
// ...
types.add_type<CallOperator>("CallOperator").method(&CallOperator::operator());Use in Julia:
call_op = CallOperator()
@test call_op() == 43The C++ function does not even have to be operator(), but of course it is most logical use case.
By default, overloaded signatures for wrapper methods are generated, so a method taking a double in C++ can be called with e.g. an Int in Julia. Wrapping a function like this:
mod.method("half_lambda", [](const double a) {return a*0.5;});then yields the methods:
half_lambda(arg1::Int64)
half_lambda(arg1::Float64)In some cases (e.g. when a template parameter depends on the number type) this is not desired, so the behavior can be disabled on a per-argument basis using the StrictlyTypedNumber type. Wrapping a function like this:
mod.method("strict_half", [](const cxx_wrap::StrictlyTypedNumber<double> a) {return a.value*0.5;});will only yield the Julia method:
strict_half(arg1::Float64)Note that in C++ the number value is accessed using the value member of StrictlyTypedNumber.
The automatic overloading can be customized. For example, to allow passing an Int64 where a UInt64 is normally expected, the following method can be added:
CxxWrap.argument_overloads(t::Type{UInt64}) = [Int64]Currently, std::shared_ptr and std::unique_ptr are supported transparently. Returning one of these pointer types will return an object of type SharedPtr{T} (or UniquePtr{T}), and a get method is added automatically to the module that wraps T to extract the pointer. Example from the types test:
types.method("shared_world_factory", []()
{
return std::shared_ptr<World>(new World("shared factory hello"));
});The shared pointer can then be used in a function taking an object of type World like this (the module is named CppTypes here):
swf = CppTypes.shared_world_factory()
CppTypes.greet(CppTypes.get(swf))To shorten this form, the get function may be exported of course. To avoid having to use the get function for common methods, functions taking the regular class can be overloaded in C++, like this for the greet method:
types.method("greet", [](const std::shared_ptr<World>& w)
{
return w->greet();
});We can then call it directly on the shared pointer:
CppTypes.greet(swf)When directly adding a regular free C++ function as a method, it will be called directly using ccall and any exception will abort the Julia program. To avoid this, you can force wrapping it in an std::functor to intercept the exception automatically by setting the force_convert argument to method to true:
mod.method("test_exception", test_exception, true);Member functions and lambdas are automatically wrapped in an std::functor and so any exceptions thrown there are always intercepted and converted to a Julia exception.
C++11 tuples can be converted to Julia tuples by including the containers/tuple.hpp header:
#include <cxx_wrap.hpp>
#include <containers/tuple.hpp>
JULIA_CPP_MODULE_BEGIN(registry)
cxx_wrap::Module& containers = registry.create_module("Containers");
containers.method("test_tuple", []() { return std::make_tuple(1, 2., 3.f); });
containers.export_symbols("test_tuple");
JULIA_CPP_MODULE_ENDUse in Julia:
using CxxWrap
using Base.Test
wrap_modules(CxxWrap._l_containers)
using Containers
@test test_tuple() == (1,2.0,3.0f0)The ArrayRef type is provided to work conveniently with array data from Julia. Defining a function like this in C++:
void test_array_set(cxx_wrap::ArrayRef<double> a, const int64_t i, const double v)
{
a[i] = v;
}This can be called from Julia as:
ta = [1.,2.]
test_array_set(ta, 0, 3.)The ArrayRef type provides basic functionality:
- iterators
size[]read-write accessorpush_backfor appending elements
Sometimes, a function returns a const pointer that is an array, either of fixed size or with a size that can be determined from elsewhere in the API. Example:
const double* const_vector()
{
static double d[] = {1., 2., 3};
return d;
}In this simple case, the most logical way to translate this would be as a tuple:
mymodule.method("const_ptr_arg", []() { return std::make_tuple(const_vector().ptr[0], const_vector().ptr[1], const_vector().ptr[2]); });In the case of a larger blob of heap-allocated data it makes more sense to convert this to a ConstArray, which implements the read-only part of the Julia array interface, so it exposes the data safely to Julia in a way that can be used natively:
mymodule.method("const_vector", []() { return cxx_wrap::make_const_array(const_vector(), 3); });For multi-dimensional arrays, the make_const_array function takes multiple sizes, e.g.:
const double* const_matrix()
{
static double d[2][3] = {{1., 2., 3}, {4., 5., 6.}};
return &d[0][0];
}
// ...module definition skipped...
mymodule.method("const_matrix", []() { return cxx_wrap::make_const_array(const_matrix(), 3, 2); });Note that because of the column-major convention in Julia, the sizes are in reversed order from C++, so the Julia code:
display(const_matrix())shows:
3x2 ConstArray{Float64,2}:
1.0 4.0
2.0 5.0
3.0 6.0
Directly calling Julia functions uses jl_call from julia.h but with a more convenient syntax and automatic argument conversion and boxing. Use a JuliaFunction to get a functor that can be invoked directly. Example for calling the max function from Base:
mymodule.method("julia_max", [](double a, double b)
{
cxx_wrap::JuliaFunction max("max");
return max(a, b);
});Internally, the arguments and return value are boxed, making this method convenient but slower than calling a regular C function.
The function CxxWrap.safe_cfunction provides a wrapper around Base.cfunction that checks the type of the function pointer. Example C++ function:
mymodule.method("call_safe_function", [](double(*f)(double,double))
{
if(f(1.,2.) != 3.)
{
throw std::runtime_error("Incorrect callback result, expected 3");
}
});Use from Julia:
testf(x,y) = x+y
c_func = safe_cfunction(testf, Float64, (Float64,Float64))
MyModule.call_safe_function(c_func)Using types different from the expected function pointer call will result in an error. This check incurs a runtime overhead, so the idea here is that the function is converted only once and then applied many times on the C++ side.
If the result of safe_cfunction needs to be stored before the calling signature is known, direct conversion of the created structure (type SafeCFunction) is also possible. It can then be converted later using cxx_wrap::make_function_pointer:
mymodule.method("call_safe_function", [](cxx_wrap::SafeCFunction f_data)
{
auto f = cxx_wrap::make_function_pointer<double(double,double)>(f_data);
if(f(1.,2.) != 3.)
{
throw std::runtime_error("Incorrect callback result, expected 3");
}
});This method of calling a Julia function is less convenient, but the call overhead should be no larger than calling a regular C function through its pointer.
Sometimes, you may want to write additional Julia code in the module that is built from C++. To do this, call the wrap_module method inside an appropriately named Julia module:
module ExtendedTypes
using CxxWrap
wrap_module("libextended")
export ExtendedWorld, greet
endHere, ExtendedTypes is a name that matches the module name passed to create_module on the C++ side. The wrap_module call works as before, but now the functions and types are defined in the existing ExtendedTypes module, and additional Julia code such as exports and macros can be defined.
The library (in deps/src/cxx_wrap) is built using CMake, so it can be found from another CMake project using the following line in a CMakeLists.txt:
find_package(CxxWrap)The CMake variable CxxWrap_DIR should be set to the directory containing the CxxWrapConfig.cmake, typically ~/.julia/<Julia version>/CxxWrap/deps/usr/lib/cmake. One can then link using:
target_link_libraries(your_own_lib CxxWrap::cxx_wrap)A complete CMakeLists.txt is at deps/src/examples/CMakeLists.txt.