Thanks to visit codestin.com
Credit goes to github.com

Skip to content
/ MOODE Public

❗ This is a read-only mirror of the CRAN R package repository. MOODE — Multi-Objective Optimal Design of Experiments. Homepage: https://github.com/vkstats/MOODE Report bugs for this package: https://github.com/vkstats/MOODE/issues

Notifications You must be signed in to change notification settings

cran/MOODE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MOODE

R-CMD-check

Multi-objective Optimal Design of experiments (MOODE) for targeting the experimental objectives directly, ensuring as such that the full set of research questions is answered as economically as possible.

Installation

Install from CRAN with:

install.packages("MOODE")

You can install the development version of MOODE from GitHub with:

# install.packages("devtools")
devtools::install_github("vkstats/MOODE")

Example

As a basic example, consider an experiment with K=2 factors, each having Levels = 3 levels. The primary (assumed) model contains first-order terms, and the potential model also contains squared terms. The experiment will have Nruns = 24 runs. An optimal compound design will be sought combining $DP_S$-, $LoF-D$- and $MSE(D)$-optimality; see Koutra et al. (2024). We define the parameters for this experiment using the mood function.

library("MOODE")
ex.mood <- mood(K = 2, Levels = 3, Nruns = 24, 
                model_terms = list(primary.terms = c("x1", "x2"), 
                                   potential.terms = c("x12", "x22")), 
                criterion.choice = "MSE.D", 
                kappa = list(kappa.DP = 1 / 3, kappa.LoF = 1 / 3, 
                             kappa.mse = 1 / 3))

The kappa list defines weights for each criterion, with $\kappa_i\ge 0$ and $\sum \kappa_i = 1$.

Optimal designs are found using a point exchange algorithm, via the Search function.

search.ex <- Search(ex.mood)
#> ✔ Design search complete. Final compound objective function value = 0.19717

The best design found is available as element X.design, ordered here by treatment number.

fd <- search.ex$X.design[order(search.ex$X1[, 1]),]
cbind(fd[1:12, ], fd[13:24, ])
#>       x1 x2 x1 x2
#>  [1,] -1 -1  0  1
#>  [2,] -1 -1  0  1
#>  [3,] -1 -1  1 -1
#>  [4,] -1  0  1 -1
#>  [5,] -1  0  1 -1
#>  [6,] -1  1  1 -1
#>  [7,] -1  1  1  0
#>  [8,] -1  1  1  0
#>  [9,] -1  1  1  1
#> [10,]  0 -1  1  1
#> [11,]  0 -1  1  1
#> [12,]  0  0  1  1

The path element records the compound objective function value from each of the (by default) 10 attempts of the algorithm from different random starting designs.

search.ex$path
#>  [1] 0.1971797 0.1971700 0.1971714 0.1971458 0.1971621 0.1971951 0.1971238
#>  [8] 0.1972105 0.1979960 0.1971959

About

❗ This is a read-only mirror of the CRAN R package repository. MOODE — Multi-Objective Optimal Design of Experiments. Homepage: https://github.com/vkstats/MOODE Report bugs for this package: https://github.com/vkstats/MOODE/issues

Resources

Stars

Watchers

Forks

Packages

No packages published