Thanks to visit codestin.com
Credit goes to github.com

Skip to content
/ RaJIVE Public

❗ This is a read-only mirror of the CRAN R package repository. RaJIVE — Robust Angle Based Joint and Individual Variation Explained

License

Notifications You must be signed in to change notification settings

cran/RaJIVE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RaJIVE

RaJIVE (Robust Angle based Joint and Individual Variation Explained) is a robust alternative to the aJIVE method for the estimation of joint and individual components in the presence of outliers in multi-source data. It decomposes the multi-source data into joint, individual and residual (noise) contributions. The decomposition is robust with respect to outliers and other types of noises present in the data.

Installation

You can install the released version of RaJIVE from CRAN with:

install.packages("RaJIVE")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("ericaponzi/RaJIVE")

Example

This is a basic example which shows how to use RaJIVE on simple simulated data:

Running robust aJIVE

library(RaJIVE)
## basic example code
n <- 50
pks <- c(100, 80, 50)
Y <- ajive.data.sim(K =3, rankJ = 3, rankA = c(7, 6, 4), n = n,
                   pks = pks, dist.type = 1)

initial_signal_ranks <-  c(7, 6, 4)
data.ajive <- list((Y$sim_data[[1]]), (Y$sim_data[[2]]), (Y$sim_data[[3]]))
ajive.results.robust <- Rajive(data.ajive, initial_signal_ranks)

The function returns a list containing the aJIVE decomposition, with the joint component (shared across data sources), individual component (data source specific) and residual component for each data source.

Visualizing results:

  • Joint rank:
get_joint_rank(ajive.results.robust)
#> [1] 3
  • Individual ranks:
get_individual_rank(ajive.results.robust, 1)
#> [1] 5
get_individual_rank(ajive.results.robust, 2)
#> [1] 3
get_individual_rank(ajive.results.robust, 3)
#> [1] 1
  • Heatmap decomposition:
decomposition_heatmaps_robustH(data.ajive, ajive.results.robust)

  • Proportion of variance explained:
showVarExplained_robust(ajive.results.robust, data.ajive)
#> $Joint
#> [1] 0.3148569 0.3349692 0.4197429
#> 
#> $Indiv
#> [1] 0.5499653 0.4156423 0.1522468
#> 
#> $Resid
#> [1] 0.1351778 0.2493886 0.4280103

About

❗ This is a read-only mirror of the CRAN R package repository. RaJIVE — Robust Angle Based Joint and Individual Variation Explained

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages