Thanks to visit codestin.com
Credit goes to github.com

Skip to content
/ cossonet Public

❗ This is a read-only mirror of the CRAN R package repository. cossonet — Sparse Nonparametric Regression for High-Dimensional Data

Notifications You must be signed in to change notification settings

cran/cossonet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

cossonet

Installation

We first load the library for cossonet and set a seed for reproducibility.

devtools::install_github("jiieunshin/cossonet")
library(cossonet)
set.seed(20250101)

Data generation

The function data_generation generates example datasets with continuous response. We generate a training set with $n=200$ and $p=20$, and a test set with $n=1000$ and $p=20$.

tr = data_generation(n = 200, p = 20, SNR = 9, response = "continuous")
te = data_generation(n = 1000, p = 20, SNR = 9, response = "continuous")

Model fitting

The function cossonet is the main function that fits the model. We have to input training set in this function. And Specific values are required to the arguments, such as family, lambda0, and lambda_theta`.

lambda0_seq = exp(seq(log(2^{-5}), log(2^{-1}), length.out = 20))
lambda_theta_seq = exp(seq(log(2^{-8}), log(2^{-5}), length.out = 20))

fit = cossonet(tr$x, tr$y, family = 'gaussian',
	       lambda0 = lambda0_seq,
	       lambda_theta = lambda_theta_seq
	       )

Prediction

The function cossonet.predict is used to predict new data based on the fitted model. The output includes predicted values $\hat{f}$ (from f.new) and $\hat{\mu}$ (from mu.new) for the new data. The predicted value and predictive accuracy for the test set using our fitted model can be obtained by

pred = cossonet.predict(fit, te$x)
mean((te$f - pred$f.new)^2)

About

❗ This is a read-only mirror of the CRAN R package repository. cossonet — Sparse Nonparametric Regression for High-Dimensional Data

Resources

Stars

Watchers

Forks

Packages

No packages published