Thanks to visit codestin.com
Credit goes to github.com

Skip to content
/ ocf Public

❗ This is a read-only mirror of the CRAN R package repository. ocf — Ordered Correlation Forest. Homepage: https://riccardo-df.github.io/ocf/https://github.com/riccardo-df/ocf Report bugs for this package: https://github.com/riccardo-df/ocf/issues

Notifications You must be signed in to change notification settings

cran/ocf

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ordered Correlation Forest

CRAN status CRAN Downloads overall

R package to implement ordered correlation forest, a machine learning estimator specifically optimized for predictive modeling of ordered non-numeric outcomes.

ocf provides forest-based estimation of the conditional choice probabilities and the covariates’ marginal effects. Under an "honesty" condition, the estimates are consistent and asymptotically normal and standard errors can be obtained by leveraging the weight-based representation of the random forest predictions. Please reference the use as Di Francesco (2025).

To get started, please check the online short tutorial.

Installation

The package can be downloaded from CRAN:

install.packages("ocf")

Alternatively, the current development version of the package can be installed using the devtools package:

devtools::install_github("riccardo-df/ocf") # run install.packages("devtools") if needed.

References

  • Athey, S., Tibshirani, J., & Wager, S. (2019). Generalized Random Forests. Annals of Statistics, 47(2). [paper]

  • Di Francesco, R. (2025). Ordered Correlation Forest. Econometric Reviews. [paper]

  • Lechner, M., & Mareckova, J. (2022). Modified Causal Forest. arXiv preprint arXiv:2209.03744. [paper]

  • Lechner, M., & Okasa, G. (2024). Random Forest Estimation of the Ordered Choice Model. Empirical Economics. [paper]

  • Peracchi, F. (2014). Econometric methods for ordered responses: Some recent developments. In Econometric methods and their applications in finance, macro and related fields(pp. 133–165). World Scientific. [paper]

  • Wager, S., & Athey, S. (2018). Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. Journal of the American Statistical Association, 113(523). [paper]

  • Wright, M. N. & Ziegler, A. (2017). ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software, 77(1). [paper]

About

❗ This is a read-only mirror of the CRAN R package repository. ocf — Ordered Correlation Forest. Homepage: https://riccardo-df.github.io/ocf/https://github.com/riccardo-df/ocf Report bugs for this package: https://github.com/riccardo-df/ocf/issues

Resources

Stars

Watchers

Forks

Packages

No packages published