This R package consists of utilities for multivariate inverse Gaussian (MIG) models with mean 
- 
migfor the MIG distribution(rmigfor random number generation anddmigfor density)
- 
tellipt(rtelliptfor random vector generation anddtelliptthe density) for truncated Student-$t$ or Gaussian distribution over the half space${\boldsymbol{x}: \boldsymbol{\beta}^\top\boldsymbol{x}>\delta}$ for$\delta \geq 0$ .
- 
fit_migto estimate the parameters of the MIG distribution via maximum likelihood (mle) or the method of moments (mom).
- mig_kdens_bandwidthto estimate the bandwidth matrix minimizing the asymptotic mean integrated squared error (AMISE) or the leave-one-out likelihood cross validation, minimizing the Kullback--Leibler divergence. The- amiseestimators are estimated by drawing from a- migor truncated Gaussian vector via Monte Carlo
- normalrule_bandwidthfor the normal rule of Scott for the Gaussian kernel
- mig_kdensfor the kernel density estimator
- tellipt_kdensfor the truncated Gaussian kernel density estimator